dc.contributor.author | Rivas Concepción, Juan María | |
dc.contributor.author | Gutiérrez García, José Javier | |
dc.contributor.author | Guasque, Ana | |
dc.contributor.author | Balbastre Betoret, Patricia | |
dc.contributor.other | Universidad de Cantabria | es_ES |
dc.date.accessioned | 2024-08-13T11:34:33Z | |
dc.date.available | 2024-08-13T11:34:33Z | |
dc.date.issued | 2024-08 | |
dc.identifier.issn | 1383-7621 | |
dc.identifier.other | PID2021-124502OB-C41 | es_ES |
dc.identifier.other | PID2021-124502OB-C42 | es_ES |
dc.identifier.uri | https://hdl.handle.net/10902/33432 | |
dc.description.abstract | This paper considers the offline assignment of fixed priorities in partitioned preemptive real-time systems where tasks have precedence constraints. This problem is crucial in this type of systems, as having a good fixed priority assignment allows for an efficient use of the processing resources while meeting all the deadlines. In the literature, we can find several proposals to solve this problem, which offer varying trade-offs between the quality of their results and their computational complexities. In this paper, we propose a new approach, leveraging existing algorithms that are widely exploited in the field of Machine Learning: Gradient Descent, the Adam Optimizer, and Gradient Noise. We show how to adapt these algorithms to the problem of fixed priority assignment in conjunction with existing worst-case response time analyses. We demonstrate the performance of our proposal on synthetic task-sets with different sizes. This evaluation shows that our proposal is able to find more schedulable solutions than previous heuristics, approximating optimal but intractable algorithms such as MILP or brute-force, while requiring reasonable execution times. | es_ES |
dc.description.sponsorship | This work was partially supported by MCIN/ AEI/10.13039/ 5011 00011033/ FEDER "Una manera de hacer Europa", Spain under grants PID 2021-124502OB-C41 and PID2021-124502OB-C42 (PRESECREL), and by the Vicerrectorado de Investigación de la Universitat Politècnica de Valencia (UPV) "Aid to First Research Projects", Spain under grant PAID-06-23 and PAID-10-20. | es_ES |
dc.format.extent | 14 p. | es_ES |
dc.language.iso | eng | es_ES |
dc.publisher | Elsevier | es_ES |
dc.rights | © 2024 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). | es_ES |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | * |
dc.source | Journal of Systems Architecture, 2024, 153, 103198 | es_ES |
dc.subject.other | Real-time | es_ES |
dc.subject.other | Fixed-priorities | es_ES |
dc.subject.other | Optimization | es_ES |
dc.subject.other | Gradient descent | es_ES |
dc.title | Gradient descent algorithm for the optimization of fixed priorities in real-time systems | es_ES |
dc.type | info:eu-repo/semantics/article | es_ES |
dc.relation.publisherVersion | https://doi.org/10.1016/j.sysarc.2024.103198 | es_ES |
dc.rights.accessRights | openAccess | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/PID2021-124502OB-C41/ES/MODELOS Y PLATAFORMAS PARA SISTEMA INFORMATICOS INDUSTRIALES PREDECIBLES, SEGUROS Y CONFIABLES/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/PID2021-124502OB-C42/ES/MODELOS Y PLATAFORMAS PARA SISTEMA INFORMATICOS INDUSTRIALES PREDECIBLES, SEGUROS Y CONFIABLES/ | es_ES |
dc.identifier.DOI | 10.1016/j.sysarc.2024.103198 | |
dc.type.version | publishedVersion | es_ES |