Mostrar el registro sencillo

dc.contributor.authorRivas Concepción, Juan María 
dc.contributor.authorGutiérrez García, José Javier 
dc.contributor.authorGuasque, Ana
dc.contributor.authorBalbastre Betoret, Patricia
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2024-08-13T11:34:33Z
dc.date.available2024-08-13T11:34:33Z
dc.date.issued2024-08
dc.identifier.issn1383-7621
dc.identifier.otherPID2021-124502OB-C41es_ES
dc.identifier.otherPID2021-124502OB-C42es_ES
dc.identifier.urihttps://hdl.handle.net/10902/33432
dc.description.abstractThis paper considers the offline assignment of fixed priorities in partitioned preemptive real-time systems where tasks have precedence constraints. This problem is crucial in this type of systems, as having a good fixed priority assignment allows for an efficient use of the processing resources while meeting all the deadlines. In the literature, we can find several proposals to solve this problem, which offer varying trade-offs between the quality of their results and their computational complexities. In this paper, we propose a new approach, leveraging existing algorithms that are widely exploited in the field of Machine Learning: Gradient Descent, the Adam Optimizer, and Gradient Noise. We show how to adapt these algorithms to the problem of fixed priority assignment in conjunction with existing worst-case response time analyses. We demonstrate the performance of our proposal on synthetic task-sets with different sizes. This evaluation shows that our proposal is able to find more schedulable solutions than previous heuristics, approximating optimal but intractable algorithms such as MILP or brute-force, while requiring reasonable execution times.es_ES
dc.description.sponsorshipThis work was partially supported by MCIN/ AEI/10.13039/ 5011 00011033/ FEDER "Una manera de hacer Europa", Spain under grants PID 2021-124502OB-C41 and PID2021-124502OB-C42 (PRESECREL), and by the Vicerrectorado de Investigación de la Universitat Politècnica de Valencia (UPV) "Aid to First Research Projects", Spain under grant PAID-06-23 and PAID-10-20.es_ES
dc.format.extent14 p.es_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.rights© 2024 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).es_ES
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.sourceJournal of Systems Architecture, 2024, 153, 103198es_ES
dc.subject.otherReal-timees_ES
dc.subject.otherFixed-prioritieses_ES
dc.subject.otherOptimizationes_ES
dc.subject.otherGradient descentes_ES
dc.titleGradient descent algorithm for the optimization of fixed priorities in real-time systemses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttps://doi.org/10.1016/j.sysarc.2024.103198es_ES
dc.rights.accessRightsopenAccesses_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/PID2021-124502OB-C41/ES/MODELOS Y PLATAFORMAS PARA SISTEMA INFORMATICOS INDUSTRIALES PREDECIBLES, SEGUROS Y CONFIABLES/es_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/PID2021-124502OB-C42/ES/MODELOS Y PLATAFORMAS PARA SISTEMA INFORMATICOS INDUSTRIALES PREDECIBLES, SEGUROS Y CONFIABLES/es_ES
dc.identifier.DOI10.1016/j.sysarc.2024.103198
dc.type.versionpublishedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo

© 2024 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).Excepto si se señala otra cosa, la licencia del ítem se describe como © 2024 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).