Mostrar el registro sencillo

dc.contributor.authorArdila Acuña, Víctor Ángel 
dc.contributor.authorRamírez Terán, Franco Ariel 
dc.contributor.authorSuárez Rodríguez, Almudena 
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2024-07-12T07:24:51Z
dc.date.available2024-07-12T07:24:51Z
dc.date.issued2024-06
dc.identifier.issn0018-9480
dc.identifier.issn1557-9670
dc.identifier.otherPID2020-116569RB-C31es_ES
dc.identifier.urihttps://hdl.handle.net/10902/33232
dc.description.abstractIn near-field power transfer, the distance between the transmitter and receiver resonators can be extended with the aid of an intermediate resonator, which may also be used to circumvent an obstacle such as a wall or desktop. Most previous works analyze the coupled system when driven by an independent source, which will typically require a power amplifier. Instead, an oscillator will be considered here, which will eliminate the need for the signal generator and driver. However, the two resonator couplings will have an impact on the oscillator behavior and its stability properties. We will initially address a cubic-nonlinearity oscillator and demonstrate that the coupled multiresonance network may lead to undesired oscillation modes. In the second stage, we will consider a transistor-based oscillator, which will be analyzed through a semianalytical formulation capable of providing all the coexisting periodic solutions. The undesired modes will be suppressed with the aid of a trap resonator. To maximize the power transfer, we will first obtain the optimum oscillator load admittance by means of a new procedure. Then, the admittance will be implemented using a relationship between the coupling factors. The methods will be applied to a Class-E oscillator, which has been experimentally characterizedes_ES
dc.description.sponsorshipThis work was supported in part by the Spanish Ministry of Science and Innovation (MCIN/AEI/10.13039/501100011033) under Grant PID2020-116569RB-C31 and in part by the Consejería de Universidades, Igualdad, Cultura y Deporte del Gobierno de Cantabria (Contrato Programa Gobierno de Cantabria—UC).es_ES
dc.format.extent15 p.es_ES
dc.language.isoenges_ES
dc.publisherInstitute of Electrical and Electronics Engineers Inc.es_ES
dc.rights© 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.es_ES
dc.sourceIEEE Transactions on Microwave Theory and Techniques, 2024, 72(6), 3387-3401es_ES
dc.subject.otherBifurcationes_ES
dc.subject.otherOscillatores_ES
dc.subject.otherResonator couplinges_ES
dc.subject.otherStabilityes_ES
dc.subject.otherWireless power transferes_ES
dc.titleAnalysis of an oscillatory system with three coupled coils for wireless power transferes_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.rights.accessRightsopenAccesses_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2020-116569RB-C31/ES/ANALISIS Y DISEÑO DE NUEVAS TOPOLOGIAS DE OSCILADORES PARA SISTEMAS RADAR Y DE SENSORES DE BAJO COSTO /es_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2020-116569RB-C31/ES/ANALISIS Y DISEÑO DE NUEVAS TOPOLOGIAS DE OSCILADORES PARA SISTEMAS RADAR Y DE SENSORES DE BAJO COSTO /es_ES
dc.identifier.DOI10.1109/TMTT.2023.3330366
dc.type.versionacceptedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo