Mostrar el registro sencillo

dc.contributor.authorFernández Manteca, María Gabriela
dc.contributor.authorOcampo Sosa, Alain Antonio
dc.contributor.authorFernández Vecilla, Domingo
dc.contributor.authorSiller Ruiz, María
dc.contributor.authorPía Roiz, María
dc.contributor.authorMadrazo, Fidel
dc.contributor.authorRodríguez Grande, Jorge
dc.contributor.authorCalvo Montes, Jorge
dc.contributor.authorRodríguez Cobo, Luis 
dc.contributor.authorLópez Higuera, José Miguel 
dc.contributor.authorFariñas Álvarez, María del Carmen 
dc.contributor.authorCobo García, Adolfo 
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2024-07-11T11:35:25Z
dc.date.available2024-07-11T11:35:25Z
dc.date.issued2024-10-15
dc.identifier.issn1386-1425
dc.identifier.otherPID2022-137269OB-C22es_ES
dc.identifier.otherTED2021-130378B-C21es_ES
dc.identifier.urihttps://hdl.handle.net/10902/33228
dc.description.abstractAntimicrobial resistance poses a significant challenge in modern medicine, affecting public health. Klebsiella pneumoniae infections compound this issue due to their broad range of infections and the emergence of multiple antibiotic resistance mechanisms. Efficient detection of its capsular serotypes is crucial for immediate patient treatment, epidemiological tracking and outbreak containment. Current methods have limitations that can delay interventions and increase the risk of morbidity and mortality. Raman spectroscopy is a promising alternative to identify capsular serotypes in hypermucoviscous K. pneumoniae isolates. It provides rapid and in situ measurements with minimal sample preparation. Moreover, its combination with machine learning tools demonstrates high accuracy and reproducibility. This study analyzed the viability of combining Raman spectroscopy with one-dimensional convolutional neural networks (1-D CNN) to classify four capsular serotypes of hypermucoviscous K. pneumoniae: K1, K2, K54 and K57. Our approach involved identifying the most relevant Raman features for classification to prevent overfitting in the training models. Simplifying the dataset to essential information maintains accuracy and reduces computational costs and training time. Capsular serotypes were classified with 96 % accuracy using less than 30 Raman features out of 2400 contained in each spectrum. To validate our methodology, we expanded the dataset to include both hypermucoviscous and non-mucoid isolates and distinguished between them. This resulted in an accuracy rate of 94 %. The results obtained have significant potential for practical healthcare applications, especially for enabling the prompt prescription of the appropriate antibiotic treatment against infections.es_ES
dc.description.sponsorshipThis work was supported by the R+D projects PREVAL23/05, INNVAL19/17, INNVAL23/10, funded by Instituto de Investigación Valdecilla (IDIVAL); TED2021-130378B-C21 funded by MCIN/AEI/ 10.13039/501100011033/ European Union NextGenerationEU/PRTR; PID2022-137269OB-C22 funded by MCIN/AEI/10.13039/ 501100011033/ FEDER, UE; funding by Plan Nacional de I + D + i and Instituto de Salud Carlos III (ISCIII), Subdireccion ´ General de Redes y Centros de Investigación Cooperativa, Ministerio de Ciencia, Innovación y Universidades, CIBERINFEC (CB21/13/00068), CIBER-BBN (BBNGC1601), co-financed by European Development Regional Fund “A way to achieve Europe”.es_ES
dc.format.extent12 p.es_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.rightsAttribution 4.0 Internationales_ES
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.sourceSpectrochimica acta - part A: molecular and biomolecular spectroscopy, 2024, 319, 124533es_ES
dc.subject.otherRaman spectroscopyes_ES
dc.subject.otherHypermucoviscous/hypervirulent "Klebsiella pneumoniae"es_ES
dc.subject.otherCapsular serotypees_ES
dc.subject.otherMachine learninges_ES
dc.subject.otherConvolutional neural networkes_ES
dc.titleIdentification of hypermucoviscous Klebsiella pneumoniae K1, K2, K54 and K57 capsular serotypes by Raman spectroscopyes_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttps://doi.org/10.1016/j.saa.2024.124533es_ES
dc.rights.accessRightsopenAccesses_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/PID2022-137269OB-C22/ES/SENSORES FOTONICOS PARA CIUDADES INTELIGENTES Y SOSTENIBLES II/"es_ES
dc.identifier.DOI10.1016/j.saa.2024.124533
dc.type.versionpublishedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo

Attribution 4.0 InternationalExcepto si se señala otra cosa, la licencia del ítem se describe como Attribution 4.0 International