Mostrar el registro sencillo

dc.contributor.authorFährmann, Daniel
dc.contributor.authorMartín González, Laura 
dc.contributor.authorSánchez González, Luis 
dc.contributor.authorDamer, Naser
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2024-06-27T15:25:36Z
dc.date.available2024-06-27T15:25:36Z
dc.date.issued2024-04-29
dc.identifier.issn2169-3536
dc.identifier.otherPID2021-125725OB-I00es_ES
dc.identifier.urihttps://hdl.handle.net/10902/33189
dc.description.abstractAnomaly detection is a critical task in ensuring the security and safety of infrastructure and individuals in smart environments. This paper provides a comprehensive analysis of recent anomaly detection solutions in data streams supporting smart environments, with a specific focus on multivariate time series anomaly detection in various environments, such as smart home, smart transport, and smart industry. The aim is to offer a thorough overview of the current state-of-the-art in anomaly detection techniques applicable to these environments. This includes an examination of publicly available datasets suitable for developing these techniques. The survey is designed to inform future research and practical applications in the field, serving as a valuable resource for researchers and practitioners. It not only reviews a range of state-of-the-art anomaly detection methods, from statistical and proximity-based to those adopting deep learning-methods but also covers fundamental aspects of anomaly detection. These aspects include the categorization of anomalies, detection scenarios, challenges associated, and evaluation metrics for assessing the techniques' performance.es_ES
dc.description.sponsorshipThis work was supported in part by German Federal Ministry of Education and Research and the Hessian Ministry of Higher Education, Research, Science and the Arts within their joint support of the National Research Center for Applied Cybersecurity ATHENE; and in part by Spanish State Research Agency (AEI) by means of the Project Semantically-Enabled Interoperable Trustworthy Enriched Data-Spaces (SITED) under Grant PID2021-125725OB-I00.es_ES
dc.format.extent44 p.es_ES
dc.language.isoenges_ES
dc.publisherInstitute of Electrical and Electronics Engineers, Inc.es_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internationales_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceIEEE Access, 2024, 12, 64006 -64049es_ES
dc.subject.otherAnomaly detectiones_ES
dc.subject.otherHuman activity recognitiones_ES
dc.subject.otherMachine learninges_ES
dc.subject.otherPattern recognitiones_ES
dc.subject.otherSafetyes_ES
dc.titleAnomaly detection in smart environments: a comprehensive surveyes_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttps://doi.org/10.1109/ACCESS.2024.3395051es_ES
dc.rights.accessRightsopenAccesses_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/PID2021-125725OB-I00/ES/ESPACIOS DE DATOS INTEROPERABLES Y CONFIABLES HABILITADOS SEMANTICAMENTE/
dc.identifier.DOI10.1109/ACCESS.2024.3395051
dc.type.versionpublishedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo

Attribution-NonCommercial-NoDerivatives 4.0 InternationalExcepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 International