Mostrar el registro sencillo

dc.contributor.authorSasaki, Yuya
dc.contributor.authorTakayama, Junya
dc.contributor.authorSantana Martínez, Juan Ramón 
dc.contributor.authorYamasaki, Shohei
dc.contributor.authorOkuno, Tomoya
dc.contributor.authorOnizuka, Osaka
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2024-06-25T13:10:54Z
dc.date.available2024-06-25T13:10:54Z
dc.date.issued2023
dc.identifier.isbn979-8-3503-4101-0
dc.identifier.urihttps://hdl.handle.net/10902/33169
dc.description.abstractNowadays, so as to improve services and urban area livability, multiple smart city initiatives are being carried out throughout the world. SmartSantander is a smart city project in Santander, Spain, which has relied on wireless sensor network technologies to deploy heterogeneous sensors within the city to measure multiple parameters, including outdoor parking information. In this paper, we study the prediction of parking lot availability using historical data from more than 300 outdoor parking sensors with SmartSantander. We design a graph-to-sequence model to capture the periodical fluctuation and geographical proximity of parking lots. For developing and evaluating our model, we use a 3-year dataset of parking lot availability in the city of Santander. Our model achieves a high accuracy compared with existing sequence-to-sequence models, which is accurate enough to provide a parking information service in the city. We apply our model to a smartphone application to be widely used by citizens and tourists.es_ES
dc.description.sponsorshipThis research is partially supported by the Grant-in-Aid for Scientific Research JP20H00584 and JP22H03700. We thank to SmartSantander developer group.es_ES
dc.format.extent8 p.es_ES
dc.language.isoenges_ES
dc.publisherInstitute of Electrical and Electronics Engineers, Inc.es_ES
dc.rights©2023 IEEEes_ES
dc.source2023 24th IEEE International Conference on Mobile Data Management: IEEE MDM 2023, Proceedings, Piscataway, NJ, Institute of Electrical and Electronics Engineers, Inc., 2023es_ES
dc.subject.otherGraph neural networkes_ES
dc.subject.otherInternet of Thingses_ES
dc.subject.otherSmart cityes_ES
dc.subject.otherSpatio-temporal analysises_ES
dc.titlePredicting parking lot availability by graph-to-sequence model: a case study with SmartSantanderes_ES
dc.typeinfo:eu-repo/semantics/conferenceObjectes_ES
dc.relation.publisherVersionhttps://doi.org/10.1109/MDM58254.2023.00023es_ES
dc.rights.accessRightsopenAccesses_ES
dc.identifier.DOI10.1109/MDM58254.2023.00023
dc.type.versionacceptedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo