Mostrar el registro sencillo

dc.contributor.authorRamírez García, David
dc.contributor.authorSantamaría Caballero, Luis Ignacio 
dc.contributor.authorVaerenbergh, Steven van 
dc.contributor.authorVía Rodríguez, Javier 
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2013-09-19T06:30:36Z
dc.date.available2013-09-19T06:30:36Z
dc.date.issued2007-09
dc.identifier.urihttp://hdl.handle.net/10902/3305
dc.description.abstractIn this paper, a new technique for unidimensional regression based on support vector machines is presented. The method is based on the addition of new linear restrictions to the standard (or global) support vector machines technique. Despite the new linear restrictions, a quadratic programming problem is also obtained. Moreover, the use of support vector machines allows us a straightforward derivation of a nonlinear extension of the proposed technique. Finally, simulation results are presented in which the proposed technique is applied to an equalization problem, in this example the proposed technique presents similar results to those of the Bayesian (optimal) equalizer. The technique is also applied to a nonlinear regression problem in which local modeling provides better results than global modeling.es_ES
dc.format.extent4 p.es_ES
dc.language.isospaes_ES
dc.rights© 2007 URSI Españaes_ES
dc.sourceURSI 2007, XXII Simposium Nacional de la Unión Científica Internacional de Radio, La Lagunaes_ES
dc.titleExtensión de la SVM para regresión a tramoses_ES
dc.typeinfo:eu-repo/semantics/conferenceObjectes_ES
dc.rights.accessRightsopenAccesses_ES
dc.type.versionpublishedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo