dc.contributor.author | González de la Fuente, Luis | |
dc.contributor.author | Nieto Reyes, Alicia | |
dc.contributor.author | Terán Camus, Pedro | |
dc.contributor.other | Universidad de Cantabria | es_ES |
dc.date.accessioned | 2024-06-11T16:07:41Z | |
dc.date.available | 2024-06-11T16:07:41Z | |
dc.date.issued | 2024-07 | |
dc.identifier.issn | 0165-0114 | |
dc.identifier.issn | 1872-6801 | |
dc.identifier.other | PID2022-139237NB-I00 | es_ES |
dc.identifier.other | MTM2017-86061-C2-2-P | es_ES |
dc.identifier.uri | https://hdl.handle.net/10902/33035 | |
dc.description.abstract | Statistical depth functions are a standard tool in nonparametric statistics to extend order-based univariate methods to the multivariate setting. Since there is no universally accepted total order for fuzzy data (even in the univariate case) and there is a lack of parametric models, a fuzzy extension of depth-based methods is very interesting. In this paper, we adapt the multivariate depths projection depth and Lr-type depth functions to the fuzzy setting, proposing different generalizations for the Lr-type depths. We prove that the proposed fuzzy depth functions have very good properties, obtaining that the fuzzy projection depth is the second example in the literature to satisfy simultaneously the notion of semilinear and of geometric depth. This implies that the fuzzy projection depth is extremely well behave, to order fuzzy sets with respect to fuzzy random variables. Furthermore, we illustrate the good empirical behavior of the proposed fuzzy depth functions with a real data example of trapezoidal fuzzy sets and the used of fuzzy depths in depth-based classification procedures. Finally, as trapezoidal fuzzy sets can be represented by elements of R4, we justify our proposals by also showing empirically the superiority of the fuzzy depths over the multivariate projection depth applied to fuzzy sets. | es_ES |
dc.description.sponsorship | The authors are supported by grant PID2022-139237NB-I00 funded by MCIN/AEI/10.13039/501100011033 and “ERDF A way of making Europe”. Additionally, L. González was supported by the Spanish Ministerio de Ciencia, Innovación y Universidades grant MTM2017-86061-C2-2-P. P. Terán is also supported by the Ministerio de Ciencia, Innovación y Universidades grant PID2019-104486GB-I00. | es_ES |
dc.format.extent | 24 p. | es_ES |
dc.language.iso | eng | es_ES |
dc.publisher | Elsevier | es_ES |
dc.rights | © 2024 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). | es_ES |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.source | Fuzzy Sets and Systems, 2024, 487, 108991 | es_ES |
dc.subject.other | Fuzzy data | es_ES |
dc.subject.other | Fuzzy random variable | es_ES |
dc.subject.other | Nonparametric statistics | es_ES |
dc.subject.other | Statistical depth | es_ES |
dc.subject.other | Projection depth | es_ES |
dc.subject.other | Lr-type depth | es_ES |
dc.title | Projection depth and Lr-type depths for fuzzy random variables | es_ES |
dc.type | info:eu-repo/semantics/article | es_ES |
dc.relation.publisherVersion | https://doi.org/10.1016/j.fss.2024.108991 | es_ES |
dc.rights.accessRights | openAccess | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/PID2022-139237NB-I00/ES/ORDEN: PROFUNDIDAD ESTADISTICA/ | |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MTM2017-86061-C2-2-P/ES/REMUESTREO, RECORTES Y METRICAS PROBABILISTICAS. DATOS FUNCIONALES, PROYECCIONES ALEATORIAS Y PROFUNDIDADES ESTADISTICAS. APLICACIONES/ | |
dc.identifier.DOI | 10.1016/j.fss.2024.108991 | |
dc.type.version | publishedVersion | es_ES |