Mostrar el registro sencillo

dc.contributor.authorMarqueño, Tomás
dc.contributor.authorSantamaría Pérez, David
dc.contributor.authorRuiz Fuertes, Javier 
dc.contributor.authorChuliá Jordán, Raquel
dc.contributor.authorJordá, José L.
dc.contributor.authorRey, Fernando
dc.contributor.authorMcGuire, Chris
dc.contributor.authorKavner, Abby
dc.contributor.authorMacLeod, Simon G.
dc.contributor.authorDaisenberger, Dominik
dc.contributor.authorPopescu, Catalín
dc.contributor.authorRodríguez Hernández, Plácida
dc.contributor.authorMuñoz, Alfonso
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2024-06-04T17:29:42Z
dc.date.available2024-06-04T17:29:42Z
dc.date.issued2018-05-08
dc.identifier.issn0020-1669
dc.identifier.issn1520-510X
dc.identifier.otherMAT2016-75586-C4-1-Pes_ES
dc.identifier.otherMAT2016-75586-C4-3-Pes_ES
dc.identifier.otherMAT2015-71842-Pes_ES
dc.identifier.otherMAT2015-71070-REDCes_ES
dc.identifier.urihttps://hdl.handle.net/10902/32983
dc.description.abstractWe report the formation of an ultrahigh CO₂-loaded pure-SiO₂ silicalite-1 structure at high pressure (0.7 GPa) from the interaction of empty zeolite and fluid CO₂ medium. The CO₂-filled structure was characterized in situ by means of synchrotron powder X-ray diffraction. Rietveld refinements and Fourier recycling allowed the location of 16 guest carbon dioxide molecules per unit cell within the straight and sinusoidal channels of the porous framework to be analyzed. The complete filling of pores by CO₂ molecules favors structural stability under compression, avoiding pressure-induced amorphization below 20 GPa, and significantly reduces the compressibility of the system compared to that of the parental empty one. The structure of CO₂-loaded silicalite-1 was also monitored at high pressures and temperatures, and its thermal expansivity was estimated.es_ES
dc.description.sponsorshipThe authors thank the Spanish Ministerio de Economía y Competitividad (MINECO), the Spanish Research Agency (AEI), and the European Fund for Regional Development (FEDER) for their financial support (MAT2016-75586-C4-1-P, MAT2016-75586-C4-3-P, MAT2015-71842-P; Severo Ochoa SEV-2012-0267; and MAT2015-71070-REDC (MALTA Consolider)).es_ES
dc.format.extent9 p.es_ES
dc.language.isoenges_ES
dc.publisherAmerican Chemical Societyes_ES
dc.rights© ACS This document is the Accepted Manuscript version of a Published Work that appeared in final form in Inorganic Chemistry, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see https://doi.org/10.1021/acs.inorgchem.8b00523es_ES
dc.sourceInorganic Chemistry, 2018, 57(11), 6447-6455es_ES
dc.titleAn ultrahigh CO₂-loaded silicalite-1 zeolite: structural stability and physical properties at high pressures and temperatureses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttps://doi.org/10.1021/acs.inorgchem.8b00523es_ES
dc.rights.accessRightsopenAccesses_ES
dc.identifier.DOI10.1021/acs.inorgchem.8b00523
dc.type.versionacceptedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo