Mostrar el registro sencillo

dc.contributor.authorMerino García, Iván 
dc.contributor.authorCrespo Álvarez, Sara 
dc.contributor.authorPerfecto-Irigaray, Maite
dc.contributor.authorBeobide Pacheco, Garikoitz
dc.contributor.authorIrabien Gulías, Ángel 
dc.contributor.authorAlbo Sánchez, Jonathan 
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2024-05-24T09:22:54Z
dc.date.issued2024-04-15
dc.identifier.issn0920-5861
dc.identifier.issn1873-4308
dc.identifier.otherTED2021-129810B-C21es_ES
dc.identifier.otherTED2021-129810B-C22es_ES
dc.identifier.urihttps://hdl.handle.net/10902/32918
dc.description.abstractPhotoelectrochemical gas-phase solar water splitting represents a promising avenue for sustainable hydrogen production, fulfilling the energy demands of the future. In this work, we present the fabrication and optimization of the functional performance of visible-light active BiVO4/WO3 photoanodes with a tailored multi-layered structure. The photoanodes are manufactured in a reproducible way by an automated spray pyrolysis technique, including BiVO4 (top layer) and WO3 (bottom layer) in a multi-layered structure with different ratios (80:20; 50:50; 20:80). The photoactive surfaces are fully characterized and then evaluated in a divided filter-press reactor operated in continuous mode under visible light irradiation (100 mW cm−2), where a platinized titanium plate is used as dark cathode. The results demonstrate the pivotal role of mass ratio in optimizing charge transfer kinetics and recombination rates in the photoanode. We demonstrate the synergistic effects between BiVO4 and WO3, elucidating their contributions to enhance light absorption, and reduce electron-hole recombination, determining an optimal ratio of 80:20 for both hydrogen production (155.7 μmol m−2 s−1) and on-off current density gap (0.66 mA cm−2). The developed multi-layered BiVO4/WO3 surfaces thus offer a compelling pathway for advancing gas-phase photoelectrochemical water splitting technology, underscoring the significance of electrode design and paving the way for sustainable solar hydrogen production.es_ES
dc.description.sponsorshipThe authors gratefully acknowledge the financial support from Ministerio de Ciencia e Innovación, Agencia Estatal de Investigación (MCIN/AEI/10.13039/501100011033/) and European Union (NextGenerationEU/PRTR) through the projects TED2021-129810B-C21 and TED2021-129810B-C22. The financial support from the Basque Government (IT1722-22) is also acknowledged. This Special Issue is dedicated to honor the retirement of Prof. Santiago Esplugas at the Universitat de Barcelona (UB, Spain), a key figure in the area of Catalytic Advanced Oxidation Processes.es_ES
dc.format.extent29 p.es_ES
dc.language.isoenges_ES
dc.publisherElsevier Sciencees_ES
dc.rights© 2024. This manuscript version is made available under the CC-BY-NC-ND 4.0 licensees_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceCatalysis Today, 2024, 432, 114581es_ES
dc.subject.otherPhotoelectrocatalysises_ES
dc.subject.otherBiVO4/WO3 photoanodeses_ES
dc.subject.otherSolar hydrogenes_ES
dc.subject.otherGas phasees_ES
dc.titleTailoring multi-layered BiVO4/WO3 photoanodes for an efficient photoelectrochemical gas-phase solar water splittinges_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttps://doi.org/10.1016/j.cattod.2024.114581es_ES
dc.rights.accessRightsembargoedAccesses_ES
dc.identifier.DOI10.1016/j.cattod.2024.114581
dc.type.versionacceptedVersiones_ES
dc.embargo.lift2026-04-15
dc.date.embargoEndDate2026-04-15


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo

© 2024. This manuscript version is made available under the CC-BY-NC-ND 4.0 licenseExcepto si se señala otra cosa, la licencia del ítem se describe como © 2024. This manuscript version is made available under the CC-BY-NC-ND 4.0 license