Mostrar el registro sencillo

dc.contributor.authorFernández Maza, Christian 
dc.contributor.authorGonzález Lavín, Gloria
dc.contributor.authorGómez Coma, Lucía 
dc.contributor.authorFallanza Torices, Marcos 
dc.contributor.authorOrtiz Uribe, Inmaculada 
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2024-05-21T17:24:14Z
dc.date.available2024-05-21T17:24:14Z
dc.date.issued2024-04-15
dc.identifier.issn1385-8947
dc.identifier.issn1873-3212
dc.identifier.otherPDC2022-133122-I00es_ES
dc.identifier.urihttps://hdl.handle.net/10902/32895
dc.description.abstractThis work advances the knowledge of the design and manufacture of microdroplet reactors for reactive liquid–liquid systems assisted by advanced simulation techniques (CFD). The mathematical model is based on the integrated analysis of the fluid dynamics for multiphase systems, passive mixing of reactants inside and outside the microdroplet and interfacial reaction rate. To validate the results obtained with the predictive model a spiral microdevice with droplet generation using flow-focusing geometry has been designed and fabricated by additive manufacturing. First, the influence of fluid flowrate, hold-up and viscosity on the droplets frequency and size has been evaluated with the model and assessed experimentally. Next, the performance in the separation of a binary Dysprosium-Lanthanum system has been tested, working with a dispersed aqueous phase containing the rare earth elements (REEs) solution and a continuous organic phase constituted of a solution of the extractant Cyanex® 572 in Shellsol® D70. The extraction experiments have been conducted at residence times between 3 and 60 s to generate aqueous phase monodispersed droplets with high interfacial area that varies between 61.4 and 49.2 cm2·cm−3 depending on the operating conditions. At pH 1, 90 % of dysprosium has been extracted, and almost complete separation of both REEs has been achieved. Very good agreement between simulated and experimental results has been reached with an error lower than 12 %. Therefore, here we provide the tools to design and predict the microdroplet enhanced performance of extractive liquid–liquid microreactors.es_ES
dc.description.sponsorshipFinancial assistance from the Project PDC2022-133122-I00 funded by MCIN/AEI /10.13039/501100011033 and the European Union Next Generation EU/PRTR is gratefully acknowledged. G. González-Lavín also thanks the FPU postgraduate research grant FPU21/03297 funded by MCIN/AEI/ 10.13039/501100011033 and ESF+. The authors thank Dr Gerardo Prieto from the University of Santiago de Compostela for the interfacial tension measurements.es_ES
dc.format.extent13 p.es_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internationales_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceChemical Engineering Journal, 2024, 486, 150136es_ES
dc.subject.otherFlow-focusing microreactores_ES
dc.subject.otherDroplet generationes_ES
dc.subject.otherRare earths microextractiones_ES
dc.subject.otherCFD modellinges_ES
dc.subject.otherMultiphase reactiones_ES
dc.titleHigh performance flow-focusing droplet microreactor. Extractive separation of rare earths as case of studyes_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttps://doi.org/10.1016/j.cej.2024.150136es_ES
dc.rights.accessRightsopenAccesses_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/PDC2022-133122-I00/ES/PLATAFORMA MICROFLUIDICA PARA LA SELECCION EFICIENTE DE TECNOLOGIAS DE REMEDIACION AMBIENTAL/es_ES
dc.identifier.DOI10.1016/j.cej.2024.150136
dc.type.versionpublishedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo

Attribution-NonCommercial-NoDerivatives 4.0 InternationalExcepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 International