Mostrar el registro sencillo

dc.contributor.authorSolberg, Simon Birger Byremo
dc.contributor.authorGómez Coma, Lucía 
dc.contributor.authorWilhelmsen, Øivind
dc.contributor.authorForsberg, Kerstin
dc.contributor.authorBurheim, Odne S.
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2024-05-21T14:23:05Z
dc.date.available2024-05-21T14:23:05Z
dc.date.issued2024-04-15
dc.identifier.issn1385-8947
dc.identifier.issn1873-3212
dc.identifier.urihttps://hdl.handle.net/10902/32888
dc.description.abstractIt has proven effective to recover metal compounds from aqueous mixtures by use of antisolvents; organic compounds that induce selective precipitation. A challenge with antisolvents is that they are both costly to produce and recover on an industrial scale. In recycling of lithium-ion batteries and recovering critical metals, we find that electrodialysis can be a competitive method for purifying and recycling antisolvents. In this study we investigate the use of electrodialysis to separate salt and water from a ternary solution of water, KCl and ethanol. A coupled non-equilibrium electrochemical model is developed to understand how such systems may be operated, designed, and which characteristics that are required for the ion exchange membranes. We demonstrate how the water transference coefficients of the membranes should be tuned in the process optimisation and why membrane property design is crucial to the success of this concept. Residual mixtures from antisolvent precipitation, with ethanol (EtOH) solvent weight fractions around 0.6-0.7, can be demineralised and the EtOH fraction increased by 0.1-0.2 at an energy requirement of 60-200 kWh mEtOH−3 by use of electrodialysis. In an example application of the concept, aqueous KCl is precipitated by recycled ethanol in a cyclic process, requiring 0.161 kWh molKCl−1. This example case considers complete ethanol rejection by the membranes and abundant water co-transport, characterised by the transference coefficients: tw=15 and ta=0 for water and EtOH respectively. The findings pave the way for new applications with aqueous mixtures of critical metals.es_ES
dc.description.sponsorshipThe authors are grateful for support and funding from the ENERSENSE research initiative (Grant Number (68024013) at the Norwegian University of Science and Technology, and the Department of Energy and Process Engineering through the project number 81772020. Ø.W. acknowledges funding from the Research Council of Norway (RCN) , the Center of Excellence Funding Scheme, Project No. 262644, PoreLab. The authors also wish to thank Eirun H. Birkeland for conducting measurements of diffusion coefficients, and Joachim W. Grieg for conducting measurements of membrane and electrolyte solution conductivity.es_ES
dc.format.extent11 p.es_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.rightsAttribution 4.0 Internationales_ES
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.sourceChemical Engineering Journal, 2024, 486, 150281es_ES
dc.subject.otherElectrodialysises_ES
dc.subject.otherNon-equilibrium thermodynamicses_ES
dc.subject.otherIon-exchange membraneses_ES
dc.subject.otherEthanol recyclinges_ES
dc.subject.otherDemineralisationes_ES
dc.subject.otherTransference numberses_ES
dc.titleElectrodialysis for efficient antisolvent recovery in precipitation of critical metals and lithium-ion battery recyclinges_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttps://doi.org/10.1016/j.cej.2024.150281es_ES
dc.rights.accessRightsopenAccesses_ES
dc.identifier.DOI10.1016/j.cej.2024.150281
dc.type.versionpublishedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo

Attribution 4.0 InternationalExcepto si se señala otra cosa, la licencia del ítem se describe como Attribution 4.0 International