Mostrar el registro sencillo

dc.contributor.authorPelayo Torices, Deva 
dc.contributor.authorPérez Peña, Eduardo
dc.contributor.authorRivero Martínez, María José 
dc.contributor.authorOrtiz Uribe, Inmaculada 
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2024-05-13T10:18:26Z
dc.date.available2024-05-13T10:18:26Z
dc.date.issued2024-05-01
dc.identifier.issn0920-5861
dc.identifier.issn1873-4308
dc.identifier.otherPLEC2021-007718es_ES
dc.identifier.otherPDC2022-133563-I00es_ES
dc.identifier.urihttps://hdl.handle.net/10902/32807
dc.description.abstractThe current energy crisis, in addition to the severe drought our planet is suffering, had led to the search for new alternatives to obtain green and sustainable fuel sources. Green hydrogen as an energy vector is one of the most promising possibilities. In this context, emerging technologies, such as photocatalysis, that can be driven by solar light, become especially challenging when using natural seawater (NSW) directly, avoiding previous purification steps. The exploitation of this endless resource is key to tackle the climate and energy emergency, although it faces questions derived from the presence of dissolved salts at significant concentrations. So far, some reports attribute to the latter the catalyst deactivation and loss of performance, whereas other authors have compared the results obtained with NSW and synthetic seawater and have reported higher rates of hydrogen generation with NSW. To solve this controversy, further research is needed to assess both the viability of the photocatalytic hydrogen generation from NSW and the conditions for the optimum process performance. Within this context, this study has evaluated two easy to purchase photocatalysts, TiO2 as benchmark, and CdS, in a concentration range from 50 to 150 mg L− 1 . Different sacrificial agents are used depending on the catalyst, 20% CH3OH for TiO2 and 0–0.1 mol L− 1 Na2S/Na2SO3 range for CdS. The experiments performed in batch mode gave promising results and shed new light on the positive influence of the buffer capacity of NSW, providing information about the mechanisms that take place during the process. Furthermore, this study fosters the advancement of hydrogen production technologies based on abundant and inexpensive raw materials.es_ES
dc.description.sponsorshipThese results are part of the R&D projects PLEC2021-007718 and PDC2022-133563-I00 funded by MCIN/AEI/10.13039/501100011033 and European Union NextGenerationEU/PRTR.es_ES
dc.format.extent9 p.es_ES
dc.language.isoenges_ES
dc.publisherElsevier Sciencees_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internationales_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceCatalysis Today, 2024, 433, 114672es_ES
dc.subject.otherHydrogen generationes_ES
dc.subject.otherPhotocatalysises_ES
dc.subject.otherSeawateres_ES
dc.subject.otherCdSes_ES
dc.subject.otherTiO2es_ES
dc.titleShedding light on the photocatalytic hydrogen generation from seawater using CdSes_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttps://doi.org/10.1016/j.cattod.2024.114672es_ES
dc.rights.accessRightsopenAccesses_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/PDC2022-133563-I00/ES/PRUEBA DE CONCEPTO ORIENTADA A LA IMPLEMENTACION DE LA FOTOCATALISIS HETEROGENEA/es_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PLEC2021-007718/ES/ANÁLISIS DE LA EFICIENCIA EN LA CONVERSIÓN DE ENERGÍA SOLAR EN HIDRÓGENO A PARTIR DE AGUA DE MAR/es_ES
dc.identifier.DOI10.1016/j.cattod.2024.114672
dc.type.versionpublishedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo

Attribution-NonCommercial-NoDerivatives 4.0 InternationalExcepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 International