Mostrar el registro sencillo

dc.contributor.authorBlanco Prieto, Jorge
dc.contributor.authorFerreras González, Marina
dc.contributor.authorVaerenbergh, Steven van 
dc.contributor.authorCosido Cobos, Óscar Jesús 
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2024-05-10T13:52:00Z
dc.date.available2024-05-10T13:52:00Z
dc.date.issued2024
dc.identifier.issn2504-4990
dc.identifier.otherDIN2020-011554es_ES
dc.identifier.urihttps://hdl.handle.net/10902/32805
dc.description.abstractEfficient planning and management of health transport services are crucial for improving accessibility and enhancing the quality of healthcare. This study focuses on the choice of determinant variables in the prediction of health transport demand using data mining and analysis techniques. Specifically, health transport services data from Asturias, spanning a seven-year period, are analyzed with the aim of developing accurate predictive models. The problem at hand requires the handling of large volumes of data and multiple predictor variables, leading to challenges in computational cost and interpretation of the results. Therefore, data mining techniques are applied to identify the most relevant variables in the design of predictive models. This approach allows for reducing the computational cost without sacrificing prediction accuracy. The findings of this study underscore that the selection of significant variables is essential for optimizing medical transport resources and improving the planning of emergency services. With the most relevant variables identified, a balance between prediction accuracy and computational efficiency is achieved. As a result, improved service management is observed to lead to increased accessibility to health services and better resource planning.es_ES
dc.description.sponsorshipThis article is part of the project "Research for simulation using Digital Twins based on predictive analysis models focused on space and sanitary resource management" (Grant DIN2020-011554) funded by MCIN/AEI/ 10.13039/501100011033 and by "European Union NextGenerationEU/PRTR".es_ES
dc.format.extent20 p.es_ES
dc.language.isoenges_ES
dc.publisherMDPIes_ES
dc.rights© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).es_ES
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.sourceMachine Learning and Knowledge Extraction, 2024, 6(1), 78 - 97es_ES
dc.subject.otherData mininges_ES
dc.subject.otherAmbulance response performancees_ES
dc.subject.otherVariable importance measurees_ES
dc.subject.otherAmbulance demand predictiones_ES
dc.subject.otherExploratory data análisises_ES
dc.titleA data mining approach for health transport demandes_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttps://doi.org/10.3390/make6010005es_ES
dc.rights.accessRightsopenAccesses_ES
dc.identifier.DOI10.3390/make6010005
dc.type.versionpublishedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).Excepto si se señala otra cosa, la licencia del ítem se describe como © 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).