Mostrar el registro sencillo

dc.contributor.authorFernández Fernández, Luis Alberto 
dc.contributor.authorFarnández Ruiz, Lucía
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2024-05-09T15:54:41Z
dc.date.available2024-05-09T15:54:41Z
dc.date.issued2022-09
dc.identifier.issn2662-2556
dc.identifier.otherMTM2017-83185-Pes_ES
dc.identifier.otherID2020-114837GB-I00es_ES
dc.identifier.urihttps://hdl.handle.net/10902/32787
dc.description.abstractThis paper deals with the classic radiotherapy dose fractionation problem for cancer tumors concerning the following goals: (a) To maximize the effect of radiation on the tumor, restricting the effect produced to an organ at risk (healing approach). (b) To minimize the effect of radiation on one organ at risk, while maintaining enough effect of radiation on the tumor (palliative approach). We will assume the linear-quadratic model to characterize the radiation effect without considering the tumor repopulation between doses. The main novelty with respect to previous works concerns the presence of minimum and maximum dose fractions, to achieve the minimum effect and to avoid undesirable side effects, respectively. We have characterized in which situations is more convenient the hypofractionated protocol (deliver few fractions with high dose per fraction) and in which ones the hyperfractionated regimen (deliver a large number of lower doses of radiation) is the optimal strategy. In all cases, analytical solutions to the problem are obtained in terms of the data.es_ES
dc.description.sponsorshipOpen Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature. The work of the first author was supported by MCIN/ AEI/10.13039/501100011033/ under research projects MTM2017-83185-P and PID2020-114837GB-I00.es_ES
dc.format.extent30 p.es_ES
dc.language.isoenges_ES
dc.publisherSpringeres_ES
dc.rightsThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.es_ES
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.sourceOperations Research Forum, 2022, 3(3), 40es_ES
dc.subject.otherRadiotherapyes_ES
dc.subject.otherFractionationes_ES
dc.subject.otherMixed-integer nonlinear optimizationes_ES
dc.subject.otherLinear quadratic modeles_ES
dc.titleAnalytical solution to the radiotherapy fractionation problem including dose bound constraintses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttps://doi.org/10.1007/s43069-022-00146-8es_ES
dc.rights.accessRightsopenAccesses_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MTM2017-83185-P/ES/CONTROL OPTIMO DE ECUACIONES EN DERIVADAS PARCIALES NO LINEALES Y APLICACIONES/
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2020-114837GB-I00/ES/CONTROL OPTIMO DE ECUACIONES EN DERIVADAS PARCIALES NO LINEALES. ESTUDIO TEORICO, ANALISIS NUMERICO Y APLICACIONES/
dc.identifier.DOI10.1007/s43069-022-00146-8
dc.type.versionpublishedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.Excepto si se señala otra cosa, la licencia del ítem se describe como This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.