dc.contributor.author | Fernández Fernández, Luis Alberto | |
dc.contributor.author | Farnández Ruiz, Lucía | |
dc.contributor.other | Universidad de Cantabria | es_ES |
dc.date.accessioned | 2024-05-09T15:54:41Z | |
dc.date.available | 2024-05-09T15:54:41Z | |
dc.date.issued | 2022-09 | |
dc.identifier.issn | 2662-2556 | |
dc.identifier.other | MTM2017-83185-P | es_ES |
dc.identifier.other | ID2020-114837GB-I00 | es_ES |
dc.identifier.uri | https://hdl.handle.net/10902/32787 | |
dc.description.abstract | This paper deals with the classic radiotherapy dose fractionation problem for cancer tumors concerning the following goals: (a) To maximize the effect of radiation on the tumor, restricting the effect produced to an organ at risk (healing approach). (b) To minimize the effect of radiation on one organ at risk, while maintaining enough effect of radiation on the tumor (palliative approach). We will assume the linear-quadratic model to characterize the radiation effect without considering the tumor repopulation between doses. The main novelty with respect to previous works concerns the presence of minimum and maximum dose
fractions, to achieve the minimum effect and to avoid undesirable side effects, respectively. We have characterized in which situations is more convenient the hypofractionated protocol (deliver few fractions with high dose per fraction) and in which ones the hyperfractionated regimen (deliver a large number of lower doses of radiation) is the optimal strategy. In all cases, analytical solutions to the problem are obtained in terms of the data. | es_ES |
dc.description.sponsorship | Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature. The work of the first author was supported by MCIN/ AEI/10.13039/501100011033/ under research projects
MTM2017-83185-P and PID2020-114837GB-I00. | es_ES |
dc.format.extent | 30 p. | es_ES |
dc.language.iso | eng | es_ES |
dc.publisher | Springer | es_ES |
dc.rights | This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. | es_ES |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | * |
dc.source | Operations Research Forum, 2022, 3(3), 40 | es_ES |
dc.subject.other | Radiotherapy | es_ES |
dc.subject.other | Fractionation | es_ES |
dc.subject.other | Mixed-integer nonlinear optimization | es_ES |
dc.subject.other | Linear quadratic model | es_ES |
dc.title | Analytical solution to the radiotherapy fractionation problem including dose bound constraints | es_ES |
dc.type | info:eu-repo/semantics/article | es_ES |
dc.relation.publisherVersion | https://doi.org/10.1007/s43069-022-00146-8 | es_ES |
dc.rights.accessRights | openAccess | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MTM2017-83185-P/ES/CONTROL OPTIMO DE ECUACIONES EN DERIVADAS PARCIALES NO LINEALES Y APLICACIONES/ | |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2020-114837GB-I00/ES/CONTROL OPTIMO DE ECUACIONES EN DERIVADAS PARCIALES NO LINEALES. ESTUDIO TEORICO, ANALISIS NUMERICO Y APLICACIONES/ | |
dc.identifier.DOI | 10.1007/s43069-022-00146-8 | |
dc.type.version | publishedVersion | es_ES |