Mostrar el registro sencillo

dc.contributor.authorGarcía Gómez, Pablo 
dc.contributor.authorGonzález Rodríguez, Inés 
dc.contributor.authorVela, Camino R.
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2024-05-06T16:13:28Z
dc.date.available2024-05-06T16:13:28Z
dc.date.issued2023-03
dc.identifier.issn1069-2509
dc.identifier.issn1875-8835
dc.identifier.otherPID2019-106263RB-I00es_ES
dc.identifier.otherTED2021-131938B-I00es_ES
dc.identifier.urihttps://hdl.handle.net/10902/32755
dc.description.abstractThe flexible job shop is a well-known scheduling problem that has historically attracted much research attention both because of its computational complexity and its importance in manufacturing and engineering processes. Here we consider a variant of the problem where uncertainty in operation processing times is modeled using triangular fuzzy numbers. Our objective is to minimize the total energy consumption, which combines the energy required by resources when they are actively processing an operation and the energy consumed by these resources simply for being switched on. To solve this NP-Hard problem, we propose a memetic algorithm, a hybrid metaheuristic method that combines global search with local search. Our focus has been on obtaining an efficient method, capable of obtaining similar solutions quality-wise to the state of the art using a reduced amount of time. To assess the performance of our algorithm, we present an extensive experimental analysis that compares it with previous proposals and evaluates the effect on the search of its different components.es_ES
dc.description.sponsorshipSupported by the Spanish Government under research grants PID2019-106263RB-I00 and TED2021-131938B-I00 and by Universidad de Cantabria and the Government of Cantabria under Grant Concepción Arenal UC-20-20.es_ES
dc.format.extent17 p.es_ES
dc.language.isoenges_ES
dc.publisherIOS Presses_ES
dc.rights© 2023 The authors. Published by IOS Press. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0).es_ES
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.sourceIntegrated Computer-Aided Engineering, 2023, 30(2), 151-167es_ES
dc.subject.otherEnergy consumptiones_ES
dc.subject.otherFlexible job shop schedulinges_ES
dc.subject.otherFuzzy numberses_ES
dc.subject.otherMemetic algorithmes_ES
dc.titleEnhanced memetic search for reducing energy consumption in fuzzy flexible job shopses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttp://dx.doi.org/10.3233/ICA-230699es_ES
dc.rights.accessRightsopenAccesses_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-106263RB-I00/ES/SCHEDULING, OPTIMIZACION, NUEVOS RETOS, NUEVOS METODOS/
dc.identifier.DOI10.3233/ICA-230699
dc.type.versionpublishedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo

© 2023 The authors. Published by IOS Press. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0).Excepto si se señala otra cosa, la licencia del ítem se describe como © 2023 The authors. Published by IOS Press. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0).