Mostrar el registro sencillo

dc.contributor.authorAfsar, Sezin
dc.contributor.authorVela, Camino R.
dc.contributor.authorPalacios, Juan José
dc.contributor.authorGonzález Rodríguez, Inés 
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2024-05-06T16:08:15Z
dc.date.available2024-05-06T16:08:15Z
dc.date.issued2023-09
dc.identifier.issn0360-8352
dc.identifier.issn1879-0550
dc.identifier.otherPID2019-106263RB-I00es_ES
dc.identifier.otherTED2021-131938B-I00es_ES
dc.identifier.urihttps://hdl.handle.net/10902/32753
dc.description.abstractThe fuzzy job shop scheduling problem with makespan minimisation has received considerable attention over the last decade. Different sets of benchmark instances have been made available, and many metaheuristic solutions and corresponding upper bounds of the optimal makespan have been given for these instances in different publications. However, unlike the deterministic case, very little work has been invested in proposing and solving mathematical models for the fuzzy problem. This has resulted both in a lack of a good characterisation of the hardness of existing benchmark instances and in the absence of reliable lower and upper bounds for the makespan. In consequence, it is difficult, if not impossible to properly assess and compare new proposals of exact or approximate solving methods, thus hindering progress in this field. In this work we intend to fill this gap by proposing and solving two mathematical models, a mixed integer linear programming model and a constraint programming model. A thorough analysis on the scalability of solving these mathematical models with commercial solvers is carried out. A state-of-the-art metaheuristic algorithm from the literature is also used as reference point for a better understanding of the results. Using solvers of different nature allows us to improve known upper and lower bounds for all existing instances, and certify optimality for many of them for the first time. It also enables us to structurally characterise the instances? hardness beyond their size.es_ES
dc.description.sponsorshipThis work was supported by the Spanish Government [grant number PID2019-106263RB-I00] and [grant number TED2021-131938B-I00].es_ES
dc.format.extent14 p.es_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.rights© 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/bync-nd/4.0/).es_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceComputers and Industrial Engineering, 2023, 183, 109454es_ES
dc.subject.otherSchedulinges_ES
dc.subject.otherJob shopes_ES
dc.subject.otherFuzzy numberses_ES
dc.subject.otherMathematical modelses_ES
dc.subject.otherBenchmarkes_ES
dc.subject.otherMetaheuristicses_ES
dc.titleMathematical models and benchmarking for the fuzzy job shop scheduling problemes_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttps://doi.org/10.1016/j.cie.2023.109454es_ES
dc.rights.accessRightsopenAccesses_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-106263RB-I00/ES/SCHEDULING, OPTIMIZACION, NUEVOS RETOS, NUEVOS METODOS/
dc.identifier.DOI10.1016/j.cie.2023.109454
dc.type.versionpublishedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo

© 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/bync-nd/4.0/).Excepto si se señala otra cosa, la licencia del ítem se describe como © 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/bync-nd/4.0/).