• Mi UCrea
    Ver ítem 
    •   UCrea
    • UCrea Investigación
    • Departamento de Matemáticas, Estadística y Computación
    • D21 Artículos
    • Ver ítem
    •   UCrea
    • UCrea Investigación
    • Departamento de Matemáticas, Estadística y Computación
    • D21 Artículos
    • Ver ítem
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A probabilistic model for the prediction of intra-abdominal infection after colorectal surgery

    Ver/Abrir
    ProbabilisticModelPr ... (874.4Kb)
    Identificadores
    URI: https://hdl.handle.net/10902/32745
    DOI: 10.1007/s00384-021-03955-1
    ISSN: 0179-1958
    ISSN: 1432-1262
    Compartir
    RefworksMendeleyBibtexBase
    Estadísticas
    Ver Estadísticas
    Google Scholar
    Registro completo
    Mostrar el registro completo DC
    Autoría
    Cagigas Fernández, CarmenAutoridad Unican; Palazuelos Calderón, CamiloAutoridad Unican; Cristóbal Poch, Lidia; Gómez Ruiz, MarcosAutoridad Unican
    Fecha
    2021-11
    Derechos
    © The Authors 2021. The version of record of this article, first published in International Journal of Colorectal Disease, is available online at Publisher's website: https://doi.org/10.1007/s00384-021-03955-1
    Publicado en
    International Journal of Colorectal Disease, 2021, 36(11), 2481 - 2488
    Editorial
    Springer
    Enlace a la publicación
    https://doi.org/10.1007/s00384-021-03955-1
    Palabras clave
    Colorectal surgery
    Intra-abdominal infection
    Probabilistic model
    Resumen/Abstract
    Aim: Predicting intra-abdominal infections (IAI) after colorectal surgery by means of clinical signs is challenging. A naïve logistic regression modeling approach has some limitations, for which reason we study two potential alternatives: the use of Bayesian networks, and that of logistic regression model. Methods: Data from patients that had undergone colorectal procedures between 2010 and 2017 were used. The dataset was split into two subsets: (i) that for training the models and (ii) that for testing them. The predictive ability of the models proposed was tested (i) by comparing the ROC curves from days 1 and 3 with all the subjects in the test set and (ii) by studying the evolution of the abovementioned predictive ability from day 1 to day 5. Results: In day 3, the predictive ability of the logistic regression model achieved an AUC of 0.812, 95% CI=(0.746, 0.877), whereas that of the Bayesian network was 0.768, 95% CI=(0.695, 0.840), with a p-value for their comparison of 0.097. The ability of the Bayesian network model to predict IAI does present significant difference in predictive ability from days 3 to 5: AUC(Day 3)=0.761, 95% CI=(0.680, 0.841) and AUC(Day 5)=0.837, 95% CI=(0.769, 0.904), with a p-value for their comparison of 0.006. Conclusions: Whereas at postoperative day 3, a logistic regression model with imputed data should be used to predict IAI; at day 5, when the predictive ability is almost identical, the Bayesian network model should be used.
    Colecciones a las que pertenece
    • D21 Artículos [417]
    • IDIVAL Artículos [864]

    UNIVERSIDAD DE CANTABRIA

    Repositorio realizado por la Biblioteca Universitaria utilizando DSpace software
    Contacto | Sugerencias
    Metadatos sujetos a:licencia de Creative Commons Reconocimiento 4.0 España
     

     

    Listar

    Todo UCreaComunidades y coleccionesFecha de publicaciónAutoresTítulosTemasEsta colecciónFecha de publicaciónAutoresTítulosTemas

    Mi cuenta

    AccederRegistrar

    Estadísticas

    Ver Estadísticas
    Sobre UCrea
    Qué es UcreaGuía de autoarchivoArchivar tesisAcceso abiertoGuía de derechos de autorPolítica institucional
    Piensa en abierto
    Piensa en abierto
    Compartir

    UNIVERSIDAD DE CANTABRIA

    Repositorio realizado por la Biblioteca Universitaria utilizando DSpace software
    Contacto | Sugerencias
    Metadatos sujetos a:licencia de Creative Commons Reconocimiento 4.0 España