Mostrar el registro sencillo

dc.contributor.authorPérez Carabaza, Sara 
dc.contributor.authorBesada Portas, Eva
dc.contributor.authorLópez Orozco, José Antonio
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2024-05-06T11:26:00Z
dc.date.available2024-05-06T11:26:00Z
dc.date.issued2024-04
dc.identifier.issn1872-9681
dc.identifier.issn1568-4946
dc.identifier.otherPID2021-127073OB-I00es_ES
dc.identifier.otherPID2021-127648OB-C33es_ES
dc.identifier.urihttps://hdl.handle.net/10902/32743
dc.description.abstractThe focus of this paper is the use of Unmanned Aerial Vehicles (UAVs) for searching multiple targets under uncertain conditions in the minimal possible time. The problem, known as Minimum Time Search (MTS), belongs to the Probabilistic Search (PS) field and addresses critical missions, such as search & rescue, and military surveillance. These operations, characterized by complex and uncertain environments, demand efficient UAV trajectory optimization. The multi-target version of PS introduces additional challenges, due to their higher complexity and the need to wisely distribute the UAV´s efforts among multiple targets. In order to tackle the under-explored multi-target aspect of MTS, we optimize the time to find all targets with new Ant Colony Optimization (ACO)-based planner. This novel optimization criterion is formulated using Bayes´ theory, considering probability models of the targets (initial belief and motion model) and the sensor likelihood. Our work contributes significantly by (i) developing an objective function tailored for multi-target MTS, (ii) proposing an ACO-based planner designed to effectively handle the complexities of multiple moving targets, and (iii) introducing a novel constructive heuristic that is used by the ACO-based planner, specifically designed for the multi-target MTS problem. The efficacy of our approach is demonstrated through comprehensive analysis and validation across various scenarios, showing superior performance over existing methods in complex multi-target MTS problems.es_ES
dc.description.sponsorshipThis research work has been supported by the project Y2020/TCS-6420 of the Synergic program of the Comunidad Autonoma of Madrid, and by the Spanish national projects PID2021-127073OB-I00 and PID2021-127648OB-C33 of the MCIN/AEI/10.13039/501100011033/FEDER .es_ES
dc.format.extent20 p.es_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internationales_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceApplied Soft Computing, 2024, 155, 111471es_ES
dc.subject.otherProbabilistic path planninges_ES
dc.subject.otherAnt Colony Optimizationes_ES
dc.subject.otherUnmanned Aerial Vehicleses_ES
dc.subject.otherMulti-target probabilistic searches_ES
dc.subject.otherMinimum Time Searches_ES
dc.titleMinimizing the searching time of multiple targets in uncertain environments with multiple UAVses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttps://doi.org/10.1016/j.asoc.2024.111471es_ES
dc.rights.accessRightsopenAccesses_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/PID2021-127073OB-I00/ES/INTELIGENCIA ARTIFICIAL Y EVOLUTIVA PARA GRAFICOS Y ANIMACION POR COMPUTADOR, PROCESAMIENTO DE IMAGENES, MEDICINA Y ROBOTICA/es_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/PID2021-127648OB-C33/ES/COOPERACION DE VEHICULOS DE SUPERFICIE Y AEREOS PARA APLICACIONES DE INSPECCION EN ENTORNOS CAMBIANTES/es_ES
dc.identifier.DOI10.1016/j.asoc.2024.111471
dc.type.versionpublishedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo

Attribution-NonCommercial-NoDerivatives 4.0 InternationalExcepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 International