Mostrar el registro sencillo

dc.contributor.authorJankowski, Tomasz
dc.contributor.authorBennis, Noureddine
dc.contributor.authorMorawiak, Przemek
dc.contributor.authorZografopoulos, Dimitrios C.
dc.contributor.authorPakula, Anna
dc.contributor.authorFilipiak, Maciej
dc.contributor.authorSlowikowski, Mateusz
dc.contributor.authorLópez Higuera, José Miguel 
dc.contributor.authorAlgorri Genaro, José Francisco 
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2024-05-06T10:14:48Z
dc.date.available2024-05-06T10:14:48Z
dc.date.issued2024-04-20
dc.identifier.issn0030-3992
dc.identifier.otherTED2021-130378B-C21es_ES
dc.identifier.otherPID2022-137269OB-C22es_ES
dc.identifier.urihttps://hdl.handle.net/10902/32739
dc.description.abstractAn Adaptive Spiral Phase Plate (ASPP) based on liquid crystal (LC) and the transmission electrode technique is theoretically and experimentally demonstrated. This ASPP design enables the generation of high-quality optical vortices with topological charges ranging from ±1 to ±4 using a single device, with higher charges being directly achievable by employing higher-birefringence LC or thicker cells. The continuous reconfigurability of the optical phase shift, achieved through a simple control mechanism involving only two low voltages and 100 electrodes that distribute the voltage, sets this device as an accurate approximation to a continuous ASPP. The measured conversion efficiency ranges between almost 100% and 95% for the first and fourth topological charges, respectively. This device offers remarkable advantages, such as complete reconfigurability, allowing adjustment of operating wavelengths and topological charges. The fabrication process mirrors that of a standard LCD cell, ensuring a cost-effective and reliable solution. In summary, the proposed ASPP is a key advancement, providing superior light conversion efficiency, simplicity, and the capability for on-the-fly reconfiguration in various optical applications.es_ES
dc.description.sponsorshipJ. F. Algorri acknowledges the support of the project RYC2022- 035279-I funded by MCIN/AEI/10.13039/501100011033 and FSE+. Also, by projects TED2021-130378B-C21 and PID2022-137269OB-C22 funded by MCIN/AEI/10.13039/501100011033/ and by FEDER ‘‘A way to make Europe’’. N. Bennis also acknowledges research project UGB 22-725 (Military University of Technology).es_ES
dc.format.extent8 p.es_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.rightsAttribution 4.0 Internationales_ES
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.sourceOptics and Laser Technology, 2024, 176, 111029es_ES
dc.subject.otherOptical vorticeses_ES
dc.subject.otherLiquid crystalses_ES
dc.subject.otherOrbital angular momentumes_ES
dc.titleOptical vortices by an adaptive spiral phase platees_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttps://doi.org/10.1016/j.optlastec.2024.111029es_ES
dc.rights.accessRightsopenAccesses_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/PID2022-137269OB-C22/ES/SENSORES FOTONICOS PARA CIUDADES INTELIGENTES Y SOSTENIBLES II
dc.identifier.DOI10.1016/j.optlastec.2024.111029
dc.type.versionpublishedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo

Attribution 4.0 InternationalExcepto si se señala otra cosa, la licencia del ítem se describe como Attribution 4.0 International