Mostrar el registro sencillo

dc.contributor.authorAlonso-Orán, Diego
dc.contributor.authorDurán, Angel
dc.contributor.authorGranero Belinchón, Rafael 
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2024-05-02T15:23:52Z
dc.date.available2024-05-02T15:23:52Z
dc.date.issued2024
dc.identifier.issn0362-546X
dc.identifier.issn1873-5215
dc.identifier.otherPID2019-109348GA-I00es_ES
dc.identifier.otherPID2022-141187NB-I00es_ES
dc.identifier.urihttps://hdl.handle.net/10902/32722
dc.description.abstractIn this paper we derive three new asymptotic models for a hyperbolic-hyperbolic-elliptic system of PDEs describing the motion of a collision-free plasma in a magnetic field. The first of these models takes the form of a non-linear and non-local Boussinesq system (for the ionic density and velocity) while the second is a non-local wave equation (for the ionic density). Moreover, we derive a unidirectional asymptotic model of the latter which is closely related to the well-known Fornberg-Whitham equation. We also provide the well-posedness of these asymptotic models in Sobolev spaces. To conclude, we demonstrate the existence of a class of initial data which exhibit wave breaking for the unidirectional model.es_ES
dc.description.sponsorshipD.A-O is supported by the Spanish MINECO through Juan de la Cierva fellowship FJC2020-046032-I. A.D is supported by the Spanish Agencia Estatal de Investigación under Research Grant PID2020-113554GB-I00/AEI/10.13039/501100011033 and by the Junta de Castilla y León and FEDER funds (EU) under Research Grant VA193P20. R.G-B si funded by the project "Mathematical Analysis of Fluids and Applications" Grant PID2019-109348GA-I00 funded by MCIN/AEI/ 10.13039/501100011033 and acronym "MAFyA". This publication is also supported by a 2021 Leonardo Grant for Researchers and Cultural Creators, BBVA Foundation. The BBVA Foundation accepts no responsibility for the opinions, statements, and contents included in the project and/or the results thereof, which are entirely the responsibility of the authors. D.A-O and R.G-B are funded by the project "Análisis Matemático Aplicado y Ecuaciones Diferenciales" Grant PID2022-141187NB-I00 funded by MCIN /AEI /10.13039/501100011033/FEDER, UE and acronym "AMAED". This publication is part of the project PID2022-141187NB-I00 funded by MCIN/ AEI /10.13039/501100011033.es_ES
dc.format.extent18 p.es_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.rights© 2024 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).es_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceNonlinear Analysis: Theory, Methods and Applications, 2024, 244, 113539es_ES
dc.subject.otherCold plasma asymptotic modeles_ES
dc.subject.otherNonlocal wave equationes_ES
dc.subject.otherWell-posednesses_ES
dc.subject.otherWave-breakinges_ES
dc.titleDerivation and well-posedness for asymptotic models of cold plasmases_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttps://doi.org/10.1016/j.na.2024.113539es_ES
dc.rights.accessRightsopenAccesses_ES
dc.identifier.DOI10.1016/j.na.2024.113539
dc.type.versionpublishedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo

© 2024 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).Excepto si se señala otra cosa, la licencia del ítem se describe como © 2024 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).