Mostrar el registro sencillo

dc.contributor.authorÁlvarez Cuesta, Moisés 
dc.contributor.authorToimil Silva, Alexandra
dc.contributor.authorLosada Rodríguez, Iñigo 
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2024-04-25T13:01:23Z
dc.date.available2024-04-25T13:01:23Z
dc.date.issued2024-03
dc.identifier.issn1748-9326
dc.identifier.otherPID2021-126506OB-100es_ES
dc.identifier.otherMCIN/AEI/10.13039/501100011033/FEDER UE; TED2021-131885B-100es_ES
dc.identifier.urihttps://hdl.handle.net/10902/32682
dc.description.abstractShoreline predictions are essential for coastal management. In this era of increasing amounts of data from different sources, it is imperative to use observations to ensure the reliability of shoreline forecasts. Data assimilation has emerged as a powerful tool to bridge the gap between episodic and imprecise spatiotemporal observations and the incomplete mathematical equations describing the physics of coastal dynamics. This research seeks to maximize this potential by assessing the effectiveness of different data assimilation algorithms considering different observational data characteristics and initial system knowledge to guide shoreline models towards delivering results as close as possible to the real world. Two statistical algorithms (stochastic ensemble and extended Kalman filters) and one variational algorithm (4D-Var) are incorporated into an equilibrium cross-shore model and a one-line longshore model. A twin experimental procedure is conducted to determine the observation requirements for these assimilation algorithms in terms of accuracy, length of the data collection campaign and sampling frequency. Similarly, the initial system knowledge needed and the ability of the assimilation methods to track the system nonstationarity are evaluated under synthetic scenarios. The results indicate that with noisy observations, the Kalman filter variants outperform 4D-Var. However, 4D-Var is less restrictive in terms of initial system knowledge and tracks nonstationary parametrizations more accurately for cross-shore processes. The findings are demonstrated at two real beaches governed by different processes with different data sources used for calibration. In this contribution, the coastal processes assimilated thus far in shoreline modelling are extended, the 4D-Var algorithm is applied for the first time in the field of shoreline modelling, and guidelines on which assimilation method can be most beneficial in terms of the available observational data and system knowledge are provided..es_ES
dc.format.extent13 p.es_ES
dc.language.isoenges_ES
dc.publisherInstitute of Physics Publishinges_ES
dc.rightsAttribution 4.0 Internationales_ES
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.sourceEnvironmental Research Letters, 2024, 19, 044023es_ES
dc.subject.otherShoreline predictiones_ES
dc.subject.otherData assimilationes_ES
dc.subject.otherRemote sensinges_ES
dc.subject.otherClimate changees_ES
dc.subject.other4D-Vares_ES
dc.subject.otherKalman filteres_ES
dc.titleWhich data assimilation method to use and when: unlocking the potential of observations in shoreline modellinges_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttps://doi.org/10.1088/1748-9326/ad3143es_ES
dc.rights.accessRightsopenAccesses_ES
dc.identifier.DOI10.1088/1748-9326/ad3143
dc.type.versionpublishedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo

Attribution 4.0 InternationalExcepto si se señala otra cosa, la licencia del ítem se describe como Attribution 4.0 International