Mostrar el registro sencillo

dc.contributor.authorStanton, Gray
dc.contributor.authorRamírez García, David
dc.contributor.authorSantamaría Caballero, Luis Ignacio 
dc.contributor.authorScharf, Louis L. 
dc.contributor.authorWang, Haonan
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2024-04-16T07:54:01Z
dc.date.available2024-04-16T07:54:01Z
dc.date.issued2023
dc.identifier.isbn979-8-3503-2574-4
dc.identifier.otherPID2022-137099NB-C43es_ES
dc.identifier.otherPID2021-1231820B-I00es_ES
dc.identifier.urihttps://hdl.handle.net/10902/32589
dc.description.abstractThe recently developed Multi-Channel Factor Anal ysis (MFA) is a method for extracting a latent low-dimensional signal that is present across multiple channels and corrupted by unobserved single-channel interference and idiosyncratic noise. In MFA, only the channel structure and dimensionality of the signal and interference subspaces are specified in advance, which raises the concern that the signal, interference, and noise covariances may not be uniquely determined by the observation model. This paper presents necessary and sufficient conditions on the channel sizes and subspace dimensions to guarantee the identifiability of MFA, ensuring that the second-order spatial properties of the latent components can, in principle, be recovered from the multi-channel observations.es_ES
dc.description.sponsorshipThis work was supported in part by National Science Foundation grants DMS-1923142, CNS-1932413, and DMS 2123761. The work of I. Santamaria was funded by MCIN/ AEI /10.13039/501100011033, under grant PID2022-137099NB C43 (MADDIE). The work of D. Ramírez was partially supported by MCIN/AEI/10.13039/501100011033/FEDER, UE, under grant PID2021-123182OB-I00 (EPiCENTER) and by the Office of Naval Research (ONR) Global under contract N62909-23-1-2002.es_ES
dc.format.extent6 p.es_ES
dc.language.isoenges_ES
dc.publisherInstitute of Electrical and Electronics Engineers, Inc.es_ES
dc.rights© 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.es_ES
dc.source57th Asilomar Conference on Signals, Systems and Computers, Pacific Grove, California, 2023, 1344-1349es_ES
dc.subject.otherFactor analysis (FA)es_ES
dc.subject.otherIdentifiabilityes_ES
dc.subject.otherMulti-channel factor analysis (MFA)es_ES
dc.titleIdentifiability in multi-channel factor analysises_ES
dc.typeinfo:eu-repo/semantics/conferenceObjectes_ES
dc.relation.publisherVersionhttps://doi.org/10.1109/IEEECONF59524.2023.10476820es_ES
dc.rights.accessRightsopenAccesses_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/PID2022-137099NB-C43/ES/TECNOLOGIAS DE COMUNICACION, CODIFICACION Y PROCESADO PARA REDES CLASICAS-CUANTICAS DE PROXIMA GENERACION/es_ES
dc.identifier.DOI10.1109/IEEECONF59524.2023.10476820
dc.type.versionacceptedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo