Mostrar el registro sencillo

dc.contributor.authorHera Barquín, Guillermo de la 
dc.contributor.authorRuiz Gutiérrez, Gema 
dc.contributor.authorViguri Fuente, Javier Rufino 
dc.contributor.authorGalán Corta, Berta 
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2024-04-11T16:19:26Z
dc.date.available2024-04-11T16:19:26Z
dc.date.issued2024-04-02
dc.identifier.issn2076-3298
dc.identifier.urihttps://hdl.handle.net/10902/32539
dc.description.abstractThe conventional Haber–Bosch process (HBP) for NH3 production results in CO2 emissions of almost 400 Mt/y and is responsible for 1–2% of global energy consumption; furthermore, HBP requires large-scale industrial equipment. Green or e-ammonia produced with hydrogen from alkaline water electrolysis using renewable energy and nitrogen from the air is considered an alternative to fossil-fuel-based ammonia production. Small-scale plants with the distributed on-site production of e-ammonia will begin to supplant centralized manufacturing in a carbon-neutral framework due to its flexibility and agility. In this study, a flexible small-scale NH3 plant is analyzed with respect to three steps—H2 generation, air separation, and NH3 synthesis—to understand if milder operating conditions can benefit the process. This study investigates the aspects of flexible small-scale NH3 plants powered by alkaline electrolyzer units with three specific capacities: 1 MW, 5 MW, and 10 MW. The analysis is carried out through Aspen Plus V14 simulations, and the primary criteria for selecting the pressure, temperature, and number of reactors are based on the maximum ammonia conversion and minimum energy consumption. The results show that: (i) the plant can be operated across a wide range of process variables while maintaining low energy consumption and (ii) alkaline electrolysis is responsible for the majority of energy consumption, followed by the ammonia synthesis loop and the obtention of N2, which is negligible.es_ES
dc.description.sponsorshipThis study forms part of the ThinkInAzul programme and is supported by Ministerio de Ciencia e Innovación with funding from European Union Next Generation EU (PRTR-C17.I1) and by Comunidad Autónoma de Cantabria. Project: C17.I01—Plan Complementario de Ciencias Marinas.es_ES
dc.format.extent20 p.es_ES
dc.language.isoenges_ES
dc.publisherMDPIes_ES
dc.rights© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution(CC BY) license.es_ES
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.sourceEnvironments, 2024, 2024, 11(4), 71es_ES
dc.subject.otherAmmoniaes_ES
dc.subject.otherSmall scalees_ES
dc.subject.otherDistributed productiones_ES
dc.subject.otherGreen hydrogenes_ES
dc.subject.otherRenewable energyes_ES
dc.subject.otherAspen Plus® simulationes_ES
dc.subject.otherEnergy consumptiones_ES
dc.titleFlexible green ammonia production plants: small-scale simulations based on energy aspectses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.rights.accessRightsopenAccesses_ES
dc.identifier.DOI10.3390/environments11040071
dc.type.versionpublishedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution(CC BY) license.Excepto si se señala otra cosa, la licencia del ítem se describe como © 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution(CC BY) license.