Mostrar el registro sencillo

dc.contributor.authorBrands, Swen Franz 
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2024-04-10T09:38:30Z
dc.date.available2024-04-10T09:38:30Z
dc.date.issued2022
dc.identifier.issn0094-8276
dc.identifier.issn1944-8007
dc.identifier.urihttps://hdl.handle.net/10902/32522
dc.description.abstractThe ability of global climate models to reproduce recurrent regional atmospheric circulation types is introduced as an overarching concept to explore potential dependencies between these models. If this approach is applied on a sufficiently large spatial domain, the similarity of the resulting error pattern can be compared from one model to another. By computing a pattern correlation matrix for a large multi-model ensemble from the Coupled Model Intercomparison Project Phases 5 and 6, groups of comparatively strong correlation coefficients are obtained for those models working with similar atmospheric components. Thereby, frequent shared error patterns are found within the ensemble, which also occur for nominally different atmospheric component models. The error pattern correlation coefficients describing these similarities are nearly unrelated to model performance and can be used as statistical dependency weights.es_ES
dc.format.extent10 p.es_ES
dc.language.isoenges_ES
dc.publisherAmerican Geophysical Uniones_ES
dc.sourceGeophysical Research Letters, 2022, 49(23 ), e2022GL101446es_ES
dc.titleCommon error patterns in the regional atmospheric circulation simulated by the CMIP multi-model ensemblees_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttps://doi.org/10.1029/2022GL101446es_ES
dc.rights.accessRightsopenAccesses_ES
dc.identifier.DOI10.1029/2022GL101446
dc.type.versionpublishedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo