Mostrar el registro sencillo

dc.contributor.authorBalboa Marras, Adriana 
dc.contributor.authorCuesta Jiménez, Arturo 
dc.contributor.authorGonzález Villa, Javier 
dc.contributor.authorOrtiz Romero, Gemma 
dc.contributor.authorAlvear Portilla, Manuel Daniel 
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2024-03-22T15:04:20Z
dc.date.available2024-03-22T15:04:20Z
dc.date.issued2024-06
dc.identifier.issn0925-7535
dc.identifier.issn1879-1042
dc.identifier.otherPID2019-106025RB-I00es_ES
dc.identifier.urihttps://hdl.handle.net/10902/32428
dc.description.abstractIn this study we assessed logistic regression and machine learning models to explore their performance in predicting evacuation decisions and to provide readers with insights into the accuracy of these methods. We tested seven machine learning algorithms, including classification and regression tree, Naïve Bayes, K-nearest neighbours, support vector machine, random forest, extreme gradient boosting, and artificial neural network. We used data collected from 1,807 participants through web-based experiments to train and calibrate these models. The performance of each model was evaluated by area under the curve, accuracy, recall, specificity, precision, and F1-score. The results indicate that logistic regression had the highest area under the curve value (0.831), whereas extreme gradient boosting outperformed other machine learning models in terms of accuracy (0.780), specificity (0.810) and precision (0.820). K-nearest neighbours model had the greater recall (0.859) and artificial neural network the highest F1-score (0.785). The models identified that being with a close person was the most influential factor in the response to a fire alarm.es_ES
dc.format.extent10 p.es_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.rightsAttribution-NonCommercial 4.0 Internationales_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/*
dc.sourceSafety Science, 2024, 174, 106485es_ES
dc.subject.otherEvacuationes_ES
dc.subject.otherDecision-makinges_ES
dc.subject.otherLogistic regressiones_ES
dc.subject.otherMachine learninges_ES
dc.subject.otherFire alarmes_ES
dc.titleLogistic regression vs machine learning to predict evacuation decisions in fire alarm situationses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttps://doi.org/10.1016/j.ssci.2024.106485es_ES
dc.rights.accessRightsopenAccesses_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-106025RB-I00/ES/UNDERSTANDING HUMAN BEHAVIOUR IN CASE OF TERRORISM ATTACKS IN MASS GATHERINGS BUILDINGS/es_ES
dc.identifier.DOI10.1016/j.ssci.2024.106485
dc.type.versionpublishedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo

Attribution-NonCommercial 4.0 InternationalExcepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial 4.0 International