dc.contributor.author | Ortega Van Vloten, Sara | |
dc.contributor.author | Cagigal Gil, Laura | |
dc.contributor.author | Pérez Díaz, Beatriz | |
dc.contributor.author | Hoeke, Ron | |
dc.contributor.author | Méndez Incera, Fernando Javier | |
dc.contributor.other | Universidad de Cantabria | es_ES |
dc.date.accessioned | 2024-03-21T17:22:20Z | |
dc.date.available | 2024-03-21T17:22:20Z | |
dc.date.issued | 2024-04 | |
dc.identifier.issn | 1463-5003 | |
dc.identifier.issn | 1463-5011 | |
dc.identifier.other | PLEC2022-009362 | es_ES |
dc.identifier.other | CPP2022-010118 | es_ES |
dc.identifier.uri | https://hdl.handle.net/10902/32395 | |
dc.description.abstract | Waves produced by tropical cyclones (TCs) can be estimated using non-stationary wave models forced with timevarying wind fields. However, dynamical simulations are time and computationally demanding at regional-scale domains since high temporal and spatial resolutions are required to correctly simulate TC-induced wave propagation processes. Applications such as early warning systems, coastal risk assessments and future climate projections benefit from fast and accurate estimates of wave fields induced by close-to-real storm tracks geometry. The proposed SHyTCWaves methodology constitutes a novel tool capable of estimating the spatiotemporal variability of directional wave spectra produced by TCs in deep waters, using a hybrid approach and statistical techniques to reduce CPU time effort. This work demonstrates that TC-induced waves can be reconstructed using a stop-motion approach based on the addition of successive 6 h periods of time-varying storm conditions. The developed hybrid model reduces a TC track to a number of segments that are parameterized in terms of 10 representative TC features, and generates a library of cases dynamically pre-computed which allow to ensemble consecutive 6 h analog segments representing the original TC track. The metamodel has been compared and corrected with available satellite data, and its applicability is exemplified for TC Ofa in the South Pacific | es_ES |
dc.description.sponsorship | The authors would like to acknowledge the funding from the projects CE4Wind (CPP2022-010118 MCIN/AEI/10.13039/501100011033 and European Union - Next GenerationEU/PRTR), Perfect-Storm (2023/ TCN/003 - Goverment of Cantabria/FEDER, UE) and MyFlood (PLEC2022-009362 - MCIN/AEI/10.13039/501100011033 and Euro pean Union - Next GenerationEU/PRTR). Ron Hoeke’s contributions were supported by the CSIRO’s Research Office and in-kind contribu tions from CSIRO Environment. Laura Cagigal acknowledges the fund ing from the Juan de la Cierva – Formacion ´ FJC2021-046933-I/MCIN/ AEI/10.13039/501100011033 and the European Union “NextGener ationEU”/PRTR. | en |
dc.format.extent | 12 p. | es_ES |
dc.language.iso | eng | es_ES |
dc.publisher | Elsevier Ltd | es_ES |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 International | es_ES |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.source | Ocean Modelling, 2024, 188, 102341 | es_ES |
dc.subject.other | Tropical cyclone | es_ES |
dc.subject.other | Metamodel | es_ES |
dc.subject.other | Vortex-type winds | es_ES |
dc.subject.other | Storm parameterization | es_ES |
dc.subject.other | Hybrid modeling | es_ES |
dc.title | SHyTCWaves: A stop-motion hybrid model to predict tropical cyclone induced waves | es_ES |
dc.type | info:eu-repo/semantics/article | es_ES |
dc.relation.publisherVersion | https://doi.org/10.1016/j.ocemod.2024.102341 | es_ES |
dc.rights.accessRights | openAccess | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/PLEC2022-009362/ES/SISTEMA MULTIESCALA HÍBRIDO PARA LA PREDICCIÓN EN EL CORTO PLAZO Y LAS PROYECCIONES DE CAMBIO CLIMÁTICO DE LA INUNDACIÓN DEBIDA A FENÓMENOS COMPUESTOS (MyFlood)/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/CPP2022-010118/ES/CE4Wind - Emulador climático para el análisis de los impactos del cambio y la variabilidad climática en eventos extremos compuestos: una aplicación al sector eólico marino/ | es_ES |
dc.identifier.DOI | 10.1016/j.ocemod.2024.102341 | |
dc.type.version | publishedVersion | es_ES |