Mostrar el registro sencillo

dc.contributor.authorOrtega Van Vloten, Sara
dc.contributor.authorCagigal Gil, Laura 
dc.contributor.authorPérez Díaz, Beatriz
dc.contributor.authorHoeke, Ron
dc.contributor.authorMéndez Incera, Fernando Javier 
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2024-03-21T17:22:20Z
dc.date.available2024-03-21T17:22:20Z
dc.date.issued2024-04
dc.identifier.issn1463-5003
dc.identifier.issn1463-5011
dc.identifier.otherPLEC2022-009362es_ES
dc.identifier.otherCPP2022-010118es_ES
dc.identifier.urihttps://hdl.handle.net/10902/32395
dc.description.abstractWaves produced by tropical cyclones (TCs) can be estimated using non-stationary wave models forced with timevarying wind fields. However, dynamical simulations are time and computationally demanding at regional-scale domains since high temporal and spatial resolutions are required to correctly simulate TC-induced wave propagation processes. Applications such as early warning systems, coastal risk assessments and future climate projections benefit from fast and accurate estimates of wave fields induced by close-to-real storm tracks geometry. The proposed SHyTCWaves methodology constitutes a novel tool capable of estimating the spatiotemporal variability of directional wave spectra produced by TCs in deep waters, using a hybrid approach and statistical techniques to reduce CPU time effort. This work demonstrates that TC-induced waves can be reconstructed using a stop-motion approach based on the addition of successive 6 h periods of time-varying storm conditions. The developed hybrid model reduces a TC track to a number of segments that are parameterized in terms of 10 representative TC features, and generates a library of cases dynamically pre-computed which allow to ensemble consecutive 6 h analog segments representing the original TC track. The metamodel has been compared and corrected with available satellite data, and its applicability is exemplified for TC Ofa in the South Pacifices_ES
dc.description.sponsorshipThe authors would like to acknowledge the funding from the projects CE4Wind (CPP2022-010118 MCIN/AEI/10.13039/501100011033 and European Union - Next GenerationEU/PRTR), Perfect-Storm (2023/ TCN/003 - Goverment of Cantabria/FEDER, UE) and MyFlood (PLEC2022-009362 - MCIN/AEI/10.13039/501100011033 and Euro pean Union - Next GenerationEU/PRTR). Ron Hoeke’s contributions were supported by the CSIRO’s Research Office and in-kind contribu tions from CSIRO Environment. Laura Cagigal acknowledges the fund ing from the Juan de la Cierva – Formacion ´ FJC2021-046933-I/MCIN/ AEI/10.13039/501100011033 and the European Union “NextGener ationEU”/PRTR.en
dc.format.extent12 p.es_ES
dc.language.isoenges_ES
dc.publisherElsevier Ltdes_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internationales_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceOcean Modelling, 2024, 188, 102341es_ES
dc.subject.otherTropical cyclonees_ES
dc.subject.otherMetamodeles_ES
dc.subject.otherVortex-type windses_ES
dc.subject.otherStorm parameterizationes_ES
dc.subject.otherHybrid modelinges_ES
dc.titleSHyTCWaves: A stop-motion hybrid model to predict tropical cyclone induced waveses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttps://doi.org/10.1016/j.ocemod.2024.102341es_ES
dc.rights.accessRightsopenAccesses_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/PLEC2022-009362/ES/SISTEMA MULTIESCALA HÍBRIDO PARA LA PREDICCIÓN EN EL CORTO PLAZO Y LAS PROYECCIONES DE CAMBIO CLIMÁTICO DE LA INUNDACIÓN DEBIDA A FENÓMENOS COMPUESTOS (MyFlood)/es_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/CPP2022-010118/ES/CE4Wind - Emulador climático para el análisis de los impactos del cambio y la variabilidad climática en eventos extremos compuestos: una aplicación al sector eólico marino/es_ES
dc.identifier.DOI10.1016/j.ocemod.2024.102341
dc.type.versionpublishedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo

Attribution-NonCommercial-NoDerivatives 4.0 InternationalExcepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 International