dc.contributor.author | Lucio Fernández, David | |
dc.contributor.author | López Lara, Javier | |
dc.contributor.author | Tomás Sampedro, Antonio | |
dc.contributor.author | Losada Rodríguez, Iñigo | |
dc.contributor.other | Universidad de Cantabria | es_ES |
dc.date.accessioned | 2024-03-20T08:21:42Z | |
dc.date.available | 2024-03-20T08:21:42Z | |
dc.date.issued | 2024-04 | |
dc.identifier.issn | 0378-3839 | |
dc.identifier.issn | 1872-7379 | |
dc.identifier.other | BIA2017-87213-R | es_ES |
dc.identifier.other | PID2020-118285RB-I00 | es_ES |
dc.identifier.uri | https://hdl.handle.net/10902/32355 | |
dc.description.abstract | In this paper, an innovative framework is introduced for assessing the impact of climate change on coastal structures, with a primary emphasis on modeling future climate conditions. The framework encompasses several key components: the development of a new climate emulator to facilitate multivariate extreme value analysis; a hybrid statistical?numerical wave propagation strategy; and the integration of a novel compound modeling approach specific to coastal structure sites. These advancements are designed to effectively manage multiple climate scenarios and models within the context of high uncertainty. The methodology is applied and validated for a coastal structure located on the Mediterranean coast in Spain. Focusing on compound wave and sea-level events, the projections indicate an increase in the frequency and severity of extreme conditions, exacerbating coastal impacts such as wave overtopping. For instance, the present-day 500-year coastal flooding level would be associated with a return period of 50 years by mid-century under a stabilization scenario and would be further reduced to 25 years under a high-emission global warming scenario, resulting in important consequences for structure performance if no adaptation is implemented. | es_ES |
dc.description.sponsorship | D. Lucio is indebted to the Spanish Ministry of Science, Innovation and Universities for the funding provided in the FPI, Spain studentship (PRE2018-086142). This work has been also partially funded under the RETOS program, Spain (BIA2017-87213-R) and the State R&D Program Oriented to the Challenges of the Society, Spain (PID2020-118285RB-I00) of the Spanish Ministry of Science, Innovation and Universities. | es_ES |
dc.format.extent | 16 p. | es_ES |
dc.language.iso | eng | es_ES |
dc.publisher | Elsevier | es_ES |
dc.rights | © 2024 The Authors. | es_ES |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | * |
dc.source | Coastal Engineering, 2024, 189, 104490 | es_ES |
dc.subject.other | Climate change | es_ES |
dc.subject.other | Compound events | es_ES |
dc.subject.other | Uncertainty cascade | es_ES |
dc.subject.other | Extremes | es_ES |
dc.subject.other | Adaptation | es_ES |
dc.title | Projecting compound wave and sea-level events at a coastal structure site under climate change | es_ES |
dc.type | info:eu-repo/semantics/article | es_ES |
dc.relation.publisherVersion | https://doi.org/10.1016/j.coastaleng.2024.104490 | es_ES |
dc.rights.accessRights | openAccess | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/BIA2017-87213-R/ES/CARACTERIZACION DE LA FIABILIDAD DE OBRAS DE ABRIGO POR EFECTO DEL CAMBIO CLIMATICO/ | |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2020-118285RB-I00/ES/ADAPTACION DE INFRAESTRUCTURAS PORTUARIAS POR EFECTO DEL CAMBIO CLIMATICO MEDIANTE ESTRATEGIAS DE ADAPTACION FLEXIBLE A ESCALA LOCAL/ | |
dc.identifier.DOI | 10.1016/j.coastaleng.2024.104490 | |
dc.type.version | publishedVersion | es_ES |