Mostrar el registro sencillo

dc.contributor.authorUrrea Méndez, Diego Armando
dc.contributor.authorJesús Peñil, Manuel del 
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2024-03-19T18:33:49Z
dc.date.available2024-03-19T18:33:49Z
dc.date.issued2023
dc.identifier.issn0262-6667
dc.identifier.issn2150-3435
dc.identifier.otherRTI2018-096449-B-I00es_ES
dc.identifier.urihttps://hdl.handle.net/10902/32351
dc.description.abstractIn hydrology, extreme value analysis is normally applied at stationary yearly maxima. However, climate variability can bias the estimation of extremes by partially invalidating the stationary assumption. Extreme value analysis for sub-yearly data may depart from stationarity (since maxima from one month may not be exchangeable with maxima from another) in terms of requiring to include it in the analysis. Here, we analyse the non-stationary structure of extreme monthly rainfall in Spain using two approaches: a parametric approach and an approach based on autoregressive time series models. Our analysis considers seasonality, climate variability and long-term trends for both approaches, and it compares both including their goodness of fit and complexity. The approach uses maximum likelihood estimation and Bayesian techniques. Our results show that autoregressive models outperform parametric models, providing a more accurate representation of extreme events when extrapolating outside of the period of fit.es_ES
dc.format.extent17 p.es_ES
dc.language.isoenges_ES
dc.publisherTaylor and Francis Ltd.es_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internationales_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceHydrological Sciences Journal, 2023, 68(7), 903-919es_ES
dc.subject.otherNon-stationaryes_ES
dc.subject.otherGEV distributiones_ES
dc.subject.otherMaximum likelihoodes_ES
dc.subject.otherExtreme valueses_ES
dc.subject.otherRainfalles_ES
dc.subject.otherMaximum monthly rainfalles_ES
dc.subject.otherParametric modelses_ES
dc.subject.otherAutoregressive modelses_ES
dc.subject.otherMonte Carloes_ES
dc.subject.otherBayesian techniqueses_ES
dc.titleEstimating extreme monthly rainfall for Spain using non-stationary techniqueses_ES
dc.typeinfo:eu-repo/semantics/conferenceObjectes_ES
dc.relation.publisherVersionhttps://www.tandfonline.com/doi/full/10.1080/02626667.2023.2193294es_ES
dc.rights.accessRightsopenAccesses_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-096449-B-I00/ES/SERVICIOS CLIMATICOS PARA APLICACIONES COSTERAS SOBRE EVENTOS EXTREMOS DE DINAMICAS SUPERFICIALES MARINAS (EXCEED)/
dc.identifier.DOI10.1080/02626667.2023.2193294
dc.type.versionpublishedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo

Attribution-NonCommercial-NoDerivatives 4.0 InternationalExcepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 International