Mostrar el registro sencillo

dc.contributor.authorSantos Perodia, Gonzalo 
dc.contributor.authorLosurdo, Maria
dc.contributor.authorMoreno Gracia, Fernando 
dc.contributor.authorGutiérrez, Yael
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2024-03-19T16:45:10Z
dc.date.available2024-03-19T16:45:10Z
dc.date.issued2023-02
dc.identifier.issn2079-4991
dc.identifier.urihttps://hdl.handle.net/10902/32345
dc.description.abstractAll-dielectric metasurfaces are a blooming field with a wide range of new applications spanning from enhanced imaging to structural color, holography, planar sensors, and directionality scattering. These devices are nanopatterned structures of sub-wavelength dimensions whose optical behavior (absorption, reflection, and transmission) is determined by the dielectric composition, dimensions, and environment. However, the functionality of these metasurfaces is fixed at the fabrication step by the geometry and optical properties of the dielectric materials, limiting their potential as active reconfigurable devices. Herein, a reconfigurable all-dielectric metasurface based on two high refractive index (HRI) materials like silicon (Si) and the phase-change chalcogenide antimony triselenide (Sb₂Se₃) for the control of scattered light is proposed. It consists of a 2D array of Si–Sb₂Se₃–Si sandwich disks embedded in a SiO₂ matrix. The tunability of the device is provided through the amorphous-to-crystalline transition of Sb₂Se₃. We demonstrate that in the Sb₂Se₃ amorphous state, all the light can be transmitted, as it is verified using the zero-backward condition, while in the crystalline phase most of the light is reflected due to a resonance whose origin is the contribution of the electric (ED) and magnetic (MD) dipoles and the anapole (AP) of the nanodisks. By this configuration, a contrast in transmission (△T) of 0.81 at a wavelength of 980 nm by governing the phase of Sb₂Se₃ can be achieved.es_ES
dc.description.sponsorshipThis research was funded by the European Union’s Horizon 2020 research and innovation program (No. 899598, PHEMTRONICS).es_ES
dc.format.extent12 p.es_ES
dc.language.isoenges_ES
dc.publisherMDPIes_ES
dc.rights© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).es_ES
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.sourceNanomaterials, 2023, 13(3), 496es_ES
dc.subject.otherMetasurfacees_ES
dc.subject.otherReconfigurablees_ES
dc.subject.otherPhase-change materiales_ES
dc.subject.otherAntimony triselenidees_ES
dc.subject.otherControles_ES
dc.subject.otherDirectionalityes_ES
dc.subject.otherZero-backwardes_ES
dc.subject.otherContrastes_ES
dc.titleDirectional scattering switching from an all-dielectric phase change metasurfacees_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttps://doi.org/10.3390/nano13030496es_ES
dc.rights.accessRightsopenAccesses_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/ 899598/eu/Active Optical Phase-Change Plasmonic Transdimensional Systems Enabling Femtojoule and Femtosecond Extreme Broadband Adaptive Reconfigurable Devices/PHEMTRONICS/
dc.identifier.DOI10.3390/nano13030496
dc.type.versionpublishedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).Excepto si se señala otra cosa, la licencia del ítem se describe como © 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).