Mostrar el registro sencillo

dc.contributor.authorGeenens, Gery
dc.contributor.authorNieto Reyes, Alicia 
dc.contributor.authorFrancisci, Giacomo
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2024-03-18T17:14:02Z
dc.date.available2024-03-18T17:14:02Z
dc.date.issued2023-04
dc.identifier.issn0960-3174
dc.identifier.issn1573-1375
dc.identifier.otherMTM2017-86061-C2-2-Pes_ES
dc.identifier.urihttps://hdl.handle.net/10902/32315
dc.description.abstractThe concept of depth has proved very important for multivariate and functional data analysis, as it essentially acts as a surrogate for the notion of ranking of observations which is absent in more than one dimension. Motivated by the rapid development of technology, in particular the advent of "Big Data", we extend here that concept to general metric spaces, propose a natural depth measure and explore its properties as a statistical depth function. Working in a general metric space allows the depth to be tailored to the data at hand and to the ultimate goal of the analysis, a very desirable property given the polymorphic nature of modern data sets. This flexibility is thoroughly illustrated by several real data analyseses_ES
dc.description.sponsorshipGery Geenens’ research was supported by a Faculty Research Grant from the Faculty of Science, UNSW Sydney, Australia. Alicia Nieto-Reyes’ research was funded by the Spanish Ministerio de Ciencia, Innovación y Universidades Grant Number MTM2017-86061-C2-2-P.es_ES
dc.format.extent15 p.es_ES
dc.language.isoenges_ES
dc.publisherSpringeres_ES
dc.rights© The Author(s) 2023. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.es_ES
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.sourceStatistics and Computing, 2023, 33(2), 46es_ES
dc.subject.otherFunctional Data Analysises_ES
dc.subject.otherLens depthes_ES
dc.subject.otherMetric spacees_ES
dc.subject.otherStatistical depthes_ES
dc.subject.otherSymbolic data análisises_ES
dc.titleStatistical depth in abstract metric spaceses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttps://doi.org/10.1007/s11222-023-10216-4es_ES
dc.rights.accessRightsopenAccesses_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MTM2017-86061-C2-2-P/ES/REMUESTREO, RECORTES Y METRICAS PROBABILISTICAS. DATOS FUNCIONALES, PROYECCIONES ALEATORIAS Y PROFUNDIDADES ESTADISTICAS. APLICACIONES/
dc.identifier.DOI10.1007/s11222-023-10216-4
dc.type.versionpublishedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo

© The Author(s) 2023. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.Excepto si se señala otra cosa, la licencia del ítem se describe como © The Author(s) 2023. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.