Mostrar el registro sencillo

dc.contributor.authorFrancisci, Giacomo
dc.contributor.authorAgostinelli, Claudio
dc.contributor.authorNieto Reyes, Alicia 
dc.contributor.authorVidyashankar, Anand N.
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2024-03-18T17:02:36Z
dc.date.available2024-03-18T17:02:36Z
dc.date.issued2023
dc.identifier.issn1935-7524
dc.identifier.urihttps://hdl.handle.net/10902/32314
dc.description.abstractLocal general depth (LGD) functions are used for describing the local geometric features and mode(s) in multivariate distributions. In this paper, we undertake a rigorous systematic study of LGD and establish several analytical and statistical properties. First, we show that, when the underlying probability distribution is absolutely continuous with density f(·), the scaled version of LGD (referred to as τ-approximation) converges, uniformly and in Ld (Rp) to f(·) when τ converges to zero. Second, we establish that, as the sample size diverges to infinity the centered and scaled sample LGD converge in distribution to a centered Gaussian process uniformly in the space of bounded functions on HG, a class of functions yield-ing LGD. Third, using the sample version of the τ-approximation (SτA) and the gradient system analysis, we develop a new clustering algorithm. The validity of this algorithm requires several results concerning the uniform finite difference approximation of the gradient system associated with SτA. For this reason, we establish Bernstein-type inequality for deviations between the centered and scaled sample LGD, which is also of indepen-dent interest. Finally, invoking the above results, we establish consistency of the clustering algorithm. Applications of the proposed methods to mode estimation and upper level set estimation are also provided. Finite sample performance of the methodology are evaluated using numerical experiments and data analysis.es_ES
dc.description.sponsorshipA.N.-R.’s research is supported by Grant 21.VP67.64662 funded by "Proyectos Puente 2022" from the Spanish "Consejería de Universidades, Igualdad, Cultura y Deporte del Gobierno de Cantabria".es_ES
dc.format.extent35 p.es_ES
dc.language.isoenges_ES
dc.publisherInstitute of Mathematical Statistics and Bernoulli Societyes_ES
dc.rightsAttribution 4.0 Internationales_ES
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.sourceElectronic Journal of Statistics, 2023, 17(1), 688-722es_ES
dc.subject.otherExtreme localizationes_ES
dc.subject.otherGradient systemes_ES
dc.subject.otherHoeffding’s decompositiones_ES
dc.subject.otherLocal depthes_ES
dc.subject.otherLyapunov’s stability Theoremes_ES
dc.subject.otherModeses_ES
dc.subject.otherSample local depthes_ES
dc.subject.otherUniform central limit theoremes_ES
dc.subject.otherClusteringes_ES
dc.titleAnalytical and statistical properties of local depth functions motivated by clustering applicationses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttps://doi.org/10.1214/23-EJS2110es_ES
dc.rights.accessRightsopenAccesses_ES
dc.identifier.DOI10.1214/23-EJS2110
dc.type.versionpublishedVersiones_ES


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo

Attribution 4.0 InternationalExcepto si se señala otra cosa, la licencia del ítem se describe como Attribution 4.0 International