Mostrar el registro sencillo

dc.contributor.authorMínguez, R.
dc.contributor.authorHerrera García, Sixto 
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2024-03-18T13:37:41Z
dc.date.available2024-03-18T13:37:41Z
dc.date.issued2023
dc.identifier.issn1436-3240
dc.identifier.issn1436-3259
dc.identifier.otherPID2020-116694GB-I00es_ES
dc.identifier.otherPCIN-2017-092es_ES
dc.identifier.urihttps://hdl.handle.net/10902/32307
dc.description.abstractIntensity-duration-frequency (IDF) curves are commonly used in engineering practice for the hydraulic design of flood protection infrastructures and flood risk management. IDF curves are simple functions between the rainfall intensity, the timescale at which the rainfall process is studied, and the return period. This work proposes and tests a new methodological framework for the spatial analysis of extreme rainfall depth at different timescales, taking advantage of two different precipitation datasets: local observational and gridded products. On the one hand, the proposed method overcomes or reduces known issues related to observational datasets (missing data and short temporal coverage, outliers, systematic biases and inhomogeneities, etc.). On the other hand, it allows incorporating appropriately terrain dependencies on the spatial distribution of the extreme precipitation regime. Finally, it allows to estimate the IDF curves at regional level overcoming the deficiencies of the classical regional approaches commonly used in practice. The method has been tested to compute IDF curves all over the Basque Country, contrasting results with respect to local analyses. Results show the method robustness against outliers, missing data, systematic biases and short length time series. Moreover, since generalized extreme value (GEV)-parameters from daily gridded dataset are used as covariates, the proposed approach allows coherent spatial interpolation/extrapolation of IDF curves properly accounting for the influence of orographic factors. In addition, due to the current coexistence of local observations and gridded datasets at regional (e.g. The Alps), national (e.g. Spain, France, etc.) or international scale (e.g. E-OBS for Europe or Daymet for the United States of America), the proposed methodology has a wide range of applicability in order to fulfill the known gaps of the observational datasets and reduce the uncertainty related to analysis and characterization of the extreme precipitation regime.es_ES
dc.format.extent32 p.es_ES
dc.language.isoenges_ES
dc.publisherSpringeres_ES
dc.rights© The Author(s) 2023es_ES
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.sourceStochastic Environmental Research and Risk Assessment, 2023, 37, 3117-3148es_ES
dc.subject.otherPrecipitation extremeses_ES
dc.subject.otherReturn valueses_ES
dc.subject.otherIDF curveses_ES
dc.titleSpatial extreme model for rainfall depth: application to the estimation of IDF curves in the Basque countryes_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttps://doi.org/10.1007/s00477-023-02440-1es_ES
dc.rights.accessRightsopenAccesses_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/690462/EU/European Research Area for Climate Services/ERA4CS/es_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2020-116694GB-I00/ES/OPTIMIZACION BAJO INCERTIDUMBRE Y CONTROL ESTOCASTICO: APLICACIONES A MERCADOS ESTOCASTICOS EN EL PARADIGMA DEL BIG DATA/
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/PCIN-2017-092/ES/PREDICCION CLIMATICA ESTACIONAL Y MODELIZACION DEL IMPACTO EN LOS ECOSISTEMAS PARA LA ADAPTACION DE LA GESTION DE LOS RECURSOS HIDRICOS AL AUMENTO DE LOS EVENTOS EXTREMOS
dc.identifier.DOI10.1007/s00477-023-02440-1
dc.type.versionpublishedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo

© The Author(s) 2023Excepto si se señala otra cosa, la licencia del ítem se describe como © The Author(s) 2023