Mostrar el registro sencillo

dc.contributor.authorCano Ortiz, Saúl 
dc.contributor.authorLloret Iglesias, Lara
dc.contributor.authorMartínez Ruiz del Árbol, Pablo 
dc.contributor.authorCastro Fresno, Daniel 
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2024-03-15T17:09:13Z
dc.date.available2024-03-15T17:09:13Z
dc.date.issued2024-03
dc.identifier.issn2666-1659
dc.identifier.otherMCIN/AEI/10.13039/501100011033es_ES
dc.identifier.urihttps://hdl.handle.net/10902/32279
dc.description.abstractResearch on road infrastructure structural health monitoring is critical due to the increasing problem of deteriorated conditions. The traditional approach to pavement distress detection relies on human-based visual recognition, a time-consuming and labor-intensive method. While Deep Learning-based computer vision systems are the most promising approach, they face the challenges of reduced performance due to the scarcity of labeled data due, high annotation costs misaligned with engineering applications, and limited instances of minority defects. This paper introduces a novel generative diffusion model for data augmentation, creating synthetic images of rare defects. It also investigates methods to enhance image quality and reduce production time. Compared to Generative Adversarial Networks, the optimal configuration excels in reliability, quality and diversity. After incorporating synthetic images into the training of our pavement distress detector, YOLOv5, its mean average precision has been enhanced. This computer-aided system enhances recognition and labelling efficiency, promoting intelligent maintenance and repairs.es_ES
dc.format.extent18 p.es_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.rights© 2024 The Authors. Published by Elsevier Ltdes_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceDevelopments in the Built Environment, 2024, 17, 100315es_ES
dc.subject.otherComputer visiones_ES
dc.subject.otherDeep learninges_ES
dc.subject.otherPavement distress detectiones_ES
dc.subject.otherRoad maintenancees_ES
dc.subject.otherData augmentationes_ES
dc.subject.otherDiffusion modeles_ES
dc.titleImproving detection of asphalt distresses with deep learning-based diffusion model for intelligent road maintenancees_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttps://doi.org/10.1016/j.dibe.2023.100315es_ES
dc.rights.accessRightsopenAccesses_ES
dc.identifier.DOI10.1016/j.dibe.2023.100315
dc.type.versionpublishedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo

© 2024 The Authors. Published by Elsevier LtdExcepto si se señala otra cosa, la licencia del ítem se describe como © 2024 The Authors. Published by Elsevier Ltd