Mostrar el registro sencillo

dc.contributor.authorCano Ortiz, Saúl 
dc.contributor.authorLloret Iglesias, Lara
dc.contributor.authorMartínez Ruiz del Árbol, Pablo 
dc.contributor.authorLastra González, Pedro 
dc.contributor.authorCastro Fresno, Daniel 
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2024-03-13T10:48:06Z
dc.date.available2024-03-13T10:48:06Z
dc.date.issued2024-02-16
dc.identifier.issn0950-0618
dc.identifier.issn1879-0526
dc.identifier.otherTED2021-129749B-I00es_ES
dc.identifier.urihttps://hdl.handle.net/10902/32210
dc.description.abstractThe performance of deep learning-based computer vision systems for road infrastructure assessment is hindered by the scarcity of real-world, high-volume public datasets. Current research predominantly focuses on crack detection and segmentation, without devising end-to-end systems capable of effectively evaluating the most affected roads and assessing the out-of-sample performance. To address these limitations, this study proposes a public dataset with annotations of 7099 images and 13 types of defects, not only based on cracks, for the confrontation and development of deep learning models. These images are used to train and compare YOLOv5 sub-models based on pure detection efficiency, and standard object detection metrics, to select the optimum architecture. A novel post-processing filtering mechanism is then designed, which reduces the false positive detections by 20.5%. Additionally, a pavement condition index (ASPDI) is engineered for deep learning-based models to identify areas in need for immediate maintenance. To facilitate decision-making by road administrations, a software application is created, which integrates the ASPDI, geotagged images, and detections. This tool has allowed to detect two road sections in critical need of repair. The refined architecture is validated on open datasets, achieving mean average precision scores of 0.563 and 0.570 for RDD2022 and CPRI, respectivelyes_ES
dc.description.sponsorshipThis work was supported by the Ministry of Science and Innovation (ES) under Grant [TED2021–129749B-I00].es_ES
dc.format.extent19 p.es_ES
dc.language.isoenges_ES
dc.publisherElsevier Ltdes_ES
dc.rights© 2024 The Authors.es_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceConstruction and Building Materials, 2024, 416, 135036es_ES
dc.subject.otherComputer visiones_ES
dc.subject.otherDeep learninges_ES
dc.subject.otherPavement distress detectiones_ES
dc.subject.otherYOLOv5es_ES
dc.subject.otherPavement condition indexes_ES
dc.titleAn end-to-end computer vision system based on deep learning for pavement distress detection and quantificationes_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttps://doi.org/10.1016/j.conbuildmat.2024.135036es_ES
dc.rights.accessRightsopenAccesses_ES
dc.identifier.DOI10.1016/j.conbuildmat.2024.135036
dc.type.versionpublishedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo

© 2024 The Authors.Excepto si se señala otra cosa, la licencia del ítem se describe como © 2024 The Authors.