Mostrar el registro sencillo

dc.contributor.authorGálvez Tomida, Akemi 
dc.contributor.authorFister, Iztok
dc.contributor.authorDeb, Suash
dc.contributor.authorFister, Iztok Jr
dc.contributor.authorIglesias Prieto, Andrés 
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2024-03-12T14:33:11Z
dc.date.available2024-03-12T14:33:11Z
dc.date.issued2023-11-04
dc.identifier.issn0941-0643
dc.identifier.issn1433-3058
dc.identifier.otherPID2021-127073OB-I00es_ES
dc.identifier.urihttps://hdl.handle.net/10902/32195
dc.description.abstractOver the past few decades, the application of iterated function systems (IFS) in reconstructing fractal images has been a challenging research area. Numerous methods have been proposed to address this issue. However, they generally focus on binary or grayscale images, neglecting the color component of the process. Consequently, they are unsuitable for reconstructing colored images. In a previous paper presented at the ISCMI 2021 conference, the authors introduced a novel approach that utilizes the cuckoo search algorithm and k-means clustering for IFS fractal reconstruction of colored images. Building upon that work, this paper introduces an enhanced and extended method by combining genetic algorithms (GAs) and particle swarm optimization (PSO) with local search and image clustering. In this approach, GA and PSO are mutually coupled to automatically determine the color of the contractive functions and the IFS parameters, respectively. The output of each method serves as the input for the other in an iterative manner. Main contributions of this method are: (1) it computes automatically the optimal number and IFS code of the contractive functions; (2) the color of the contractive functions is determined automatically through an optimization process using GA; (3) a local refinement step is performed to further enhance the final solution. Overall, this new method yields highly accurate results in reconstructing the geometry and color of input fractal images, without requiring any additional information about the target beyond the bitmap image.es_ES
dc.format.extent27 p.es_ES
dc.language.isoenges_ES
dc.publisherSpringeres_ES
dc.rightsAttribution 4.0 Internationales_ES
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.sourceNeural Computing and Applications, 2023, 1-27es_ES
dc.subject.otherSwarm intelligencees_ES
dc.subject.otherGenetic algorithmses_ES
dc.subject.otherParticle swarm optimizationes_ES
dc.subject.otherImage reconstructiones_ES
dc.subject.otherColor fractal imageses_ES
dc.subject.otherIterated function systemses_ES
dc.subject.otherCollage theoremes_ES
dc.titleHybrid GA-PSO method with local search and image clustering for automatic IFS image reconstruction of fractal colored imageses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttps://link.springer.com/article/10.1007/s00521-023-08954-7es_ES
dc.rights.accessRightsopenAccesses_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/778035/EU/PDE-based geometric modelling, image processing, and shape reconstruction/PDE-GIR/es_ES
dc.identifier.DOI10.1007/s00521-023-08954-7
dc.type.versionpublishedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo

Attribution 4.0 InternationalExcepto si se señala otra cosa, la licencia del ítem se describe como Attribution 4.0 International