Mostrar el registro sencillo

dc.contributor.authorGómez Ortiz, Fernando 
dc.contributor.authorAramberri, Hugo
dc.contributor.authorLópez Martín, Juan Manuel 
dc.contributor.authorGarcía Fernández, Pablo (físico) 
dc.contributor.authorÍñiguez, Jorge
dc.contributor.authorJunquera Quintana, Francisco Javier 
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2024-03-01T18:49:26Z
dc.date.available2024-03-01T18:49:26Z
dc.date.issued2023-05
dc.identifier.issn1098-0121
dc.identifier.issn1550-235X
dc.identifier.issn2469-9950
dc.identifier.issn2469-9969
dc.identifier.otherPGC2018-096955-B-C41es_ES
dc.identifier.otherPID2021-125543NB-I00es_ES
dc.identifier.urihttps://hdl.handle.net/10902/32040
dc.description.abstractWe report second-principles simulations on the structural and energetic properties of domains in (PbTiO₃)n/(SrTiO₃)n superlattices. For the explored layer thickness (n ranging between 8 and 16 unit cells) and lateral sizes of the domains, the most stable configuration corresponds to polar domains separated by a sequence of counter-rotating vortices (clockwise/counterclockwise) perpendicular to the stacking direction and acting as domain walls. The balance between the domain wall energy and the electrostatic energy yields to an optimal domain period ω that is proportional to the square root of the thickness of the PbTiO₃ layer, following the Kittel law. For a given lateral size of the simulation box, suboptimal domain structures (with a width larger than the one predicted by the Kittel law) can be obtained in a metastable form. However, at finite temperature, molecular dynamics simulations show the spontaneous change of periodicity, which implies the formation of new domains whose generation is initiated by the nucleation of vortices and antivortices at the interface between the SrTiO₃ and the PbTiO₃ layers. The vortices progressively elongate and eventually annihilate with the antivortices yielding the formation of new domains to comply with the Kittel law via defect recombination.es_ES
dc.description.sponsorshipF.G.-O., P.G.-F., and J.J. acknowledge financial support from Grant No. PGC2018-096955-B-C41 funded by MCIN/AEI/10.13039/501100011033 and by ERDF "A way of making Europe" by the European Union. F.G.-O. acknowledges financial support from Grant No. FPU18/04661 funded by MCIN/AEI/ 10.13039/501100011033. J.M.L. was supported by Grant No. PID2021-125543NB-I00 funded by MCIN/AEI/10.13039/501100011033/ and by ERDF "A way of making Europe" by the European Union. H.A. and J.I. were funded by the Luxembourg National Research Fund through Grant No. C21/MS/15799044/FERRODYNAMICS.es_ES
dc.format.extent6 p.es_ES
dc.language.isoenges_ES
dc.publisherAmerican Physical Societyes_ES
dc.rights©2023 American Physical Societyes_ES
dc.sourcePhysical Review B, 2023, 107(17), 174102es_ES
dc.titleKittel law and domain formation mechanism in PbTiO₃/SrTiO₃ superlatticeses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttps://doi.org/10.1103/PhysRevB.107.174102es_ES
dc.rights.accessRightsopenAccesses_ES
dc.identifier.DOI10.1103/PhysRevB.107.174102
dc.type.versionpublishedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo