dc.contributor.author | Poidevin, F. | |
dc.contributor.author | Génova-Santos, R.T. | |
dc.contributor.author | Rubiño-Martín, J.A. | |
dc.contributor.author | López-Caraballo, C.H. | |
dc.contributor.author | Watson, R.A. | |
dc.contributor.author | Artal Latorre, Eduardo | |
dc.contributor.author | Ashdown, M. | |
dc.contributor.author | Barreiro Vilas, Rita Belén | |
dc.contributor.author | Casas Reinares, Francisco Javier | |
dc.contributor.author | Hoz López-Collado, Elena de la | |
dc.contributor.author | Fernández-Torreiro, M. | |
dc.contributor.author | Guidi, F. | |
dc.contributor.author | Herranz Muñoz, Diego | |
dc.contributor.author | Hoyland, R.J. | |
dc.contributor.author | Lasenby, A.N. | |
dc.contributor.author | Martínez González, Enrique | |
dc.contributor.author | Peel, M.W. | |
dc.contributor.author | Piccirillo, L. | |
dc.contributor.author | Rebolo López, Rafael | |
dc.contributor.author | Vielva Martínez, Patricio | |
dc.contributor.other | Universidad de Cantabria | es_ES |
dc.date.accessioned | 2024-02-20T07:28:57Z | |
dc.date.available | 2024-02-20T07:28:57Z | |
dc.date.issued | 2023-01-09 | |
dc.identifier.issn | 0035-8711 | |
dc.identifier.issn | 1365-2966 | |
dc.identifier.other | AYA2007-68058-C03-01 | es_ES |
dc.identifier.other | AYA2007-68058-C03-02 | es_ES |
dc.identifier.other | AYA2010-21766-C03-01 | es_ES |
dc.identifier.other | AYA2010-21766-C03-02 | es_ES |
dc.identifier.other | AYA2014-60438-P | es_ES |
dc.identifier.other | ESP2015-70646-C2-1-R | es_ES |
dc.identifier.other | AYA2017-84185-P | es_ES |
dc.identifier.other | ESP2017-83921-C2-1-R | es_ES |
dc.identifier.other | AYA2017-90675-REDC | es_ES |
dc.identifier.other | PGC2018-101814-B-I00 | es_ES |
dc.identifier.other | PID2019-110610RB-C21 | es_ES |
dc.identifier.other | PID2020-120514GB-I00 | es_ES |
dc.identifier.uri | https://hdl.handle.net/10902/31814 | |
dc.description.abstract | The QUIJOTE-MFI Northern Hemisphere Wide Survey has provided maps of the sky above declinations −30◦ at 11, 13, 17, and 19 GHz. These data are combined with ancillary data to produce Spectral Energy Distributions in intensity in the frequency range 0.4–3 000 GHz on a sample of 52 candidate compact sources harbouring anomalous microwave emission (AME). We apply a component separation analysis at 1◦ scale on the full sample from which we identify 44 sources with high AME significance. We explore correlations between different fitted parameters on this last sample. QUIJOTE-MFI data contribute to notably improve the characterization of the AME spectrum, and its separation from the other components. In particular, ignoring the 10–20 GHz data produces on average an underestimation of the AME amplitude, and an overestimation of the free–free component. We find an average AME peak frequency of 23.6 ± 3.6 GHz, about 4 GHz lower than the value reported in previous studies. The strongest correlation is found between the peak flux density of the thermal dust and of the AME component. A mild correlation is found between the AME emissivity (AAME/τ250) and the interstellar radiation field. On the other hand no correlation is found between the AME emissivity and the free–free radiation Emission Measure. Our statistical results suggest that the interstellar radiation field could still be the main driver of the intensity of the AME as regards spinning dust excitation mechanisms. On the other hand, it is not clear whether spinning dust would be most likely associated with cold phases of the interstellar medium rather than with hot phases dominated by free–free radiation. | es_ES |
dc.description.sponsorship | We thank the referee of this article, Simon Casassus, for his comments that help to improve the communication of some of the concepts presented in this work. We thank the staff of the Teide Observatory for invaluable assistance in the commissioning and operation of QUIJOTE. The QUIJOTE experiment is being developed by the Instituto de Astrofisica de Canarias (IAC), the Instituto de Fisica de Cantabria (IFCA), and the Universities of Cantabria, Manchester and Cambridge. Partial financial support was provided by the Spanish Ministry of Science and Innovation under the projects AYA2007-68058-C03-01, AYA2007-68058-C03-02, AYA2010-21766-C03-01, AYA2010-21766-C03-02, AYA2014-60438-P, ESP2015-70646-C2-1-R, AYA2017-84185-P, ESP2017-83921-C2-1-R, AYA2017-90675-REDC (co-funded with EU FEDER - Fondo Europeo de Desarrollo Regional funds), PGC2018-101814-B-I00, PID2019-110610RB-C21, PID2020-120514GB-I00, IACA13-3E-2336, IACA15-BE-3707, EQC2018-004918-P, the Severo Ochoa Programs SEV-2015-0548 and CEX2019-000920-S, the Maria de Maeztu Program MDM-2017-0765, and by the Consolider-Ingenio project CSD2010-00064 (EPI: Exploring the Physics of Inflation). We acknowledge support from the ACIISI, Consejeria de Economia, Conocimiento y Empleo del Gobierno de Canarias and the European Regional Development Fund (ERDF) under grant with reference ProID 2020010108. This project has received funding from the European Union's Horizon 2020 research and innovation program under grant agreement number 687312 (RADIOFOREGROUNDS).FP acknowledges the European Commission under the Marie Sklodowska-Curie Actions within the European Union's Horizon 2020 research and innovation programme under Grant Agreement number 658499 (PolAME). FP acknowledges support from the Spanish State Research Agency (AEI) under grant numbers PID2019-105552RB-C43. FG acknowledges funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement No 101001897). EdlH acknowledge partial financial support from the Concepcion Arenal Programme of the Universidad de Cantabria. BR -G acknowledges the Agenzia Spaziale Italiana - Istituto Nazionale di Fisica Nucleare (ASI-INFN) Agreement 2014-037-R.0. DT acknowledges the support from the Chinese Academy of Sciences President's International Fellowship Initiative, Grant No. 2020PM0042. We acknowledge the use of data from the Planck/ESA mission, downloaded from the Planck Legacy Archive, and of the Legacy Archive for Microwave Background Data Analysis (LAMBDA). Support for LAMBDA is provided by the NASA Office of Space Science. Some of the results in this paper have been derived using the HEALPIX (Gorski et al. 2005 ) package. | es_ES |
dc.format.extent | 23 p. | es_ES |
dc.language.iso | eng | es_ES |
dc.publisher | Oxford University Press | es_ES |
dc.rights | This article has been accepted for publication in Monthly Notices of the Royal Astronomical Society ©: 2023 The Author(s) Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved. | es_ES |
dc.source | Monthly Notices of the Royal Astronomical Society, 2023, 519(3), 3481-3503 | es_ES |
dc.subject.other | ISM: clouds | es_ES |
dc.subject.other | Photodissociation region (PDR) | es_ES |
dc.subject.other | Radiation mechanisms: general | es_ES |
dc.subject.other | Radiation mechanisms: non-thermal | es_ES |
dc.subject.other | Radiation mechanisms: thermal | es_ES |
dc.subject.other | Radio continuum: ISM | es_ES |
dc.title | QUIJOTE scientific results - VII. Galactic AME sources in the QUIJOTE-MFI northern hemisphere wide survey | es_ES |
dc.type | info:eu-repo/semantics/article | es_ES |
dc.relation.publisherVersion | https://doi.org/10.1093/mnras/stac3151 | es_ES |
dc.rights.accessRights | openAccess | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/H2020/687312/EU/Ultimate modelling of Radio foregrounds: a key/RADIOFOREGROUNDS/ | es_ES |
dc.identifier.DOI | 10.1093/mnras/stac3151 | |
dc.type.version | publishedVersion | es_ES |