dc.contributor.author | Codenotti, Giulia | |
dc.contributor.author | Santos, Francisco | |
dc.contributor.other | Universidad de Cantabria | es_ES |
dc.date.accessioned | 2024-02-19T15:28:21Z | |
dc.date.available | 2024-02-19T15:28:21Z | |
dc.date.issued | 2023-12 | |
dc.identifier.issn | 2766-1334 | |
dc.identifier.other | PID2019-106188GB-I0 | es_ES |
dc.identifier.other | PID2022-137283NB-C2 | es_ES |
dc.identifier.uri | https://hdl.handle.net/10902/31806 | |
dc.description.abstract | We show that the following classes of lattice polytopes have unimodular covers, in dimension three: parallelepipeds, smooth centrally symmetric polytopes, and Cayley sums Cay (P, Q) where the normal fan of
refines that of Q refines that of P. This improves results of Beck et al. (2018) and Haase et al. (2008) where the last two classes were shown to be IDP. | es_ES |
dc.description.sponsorship | Santos is supported by grants PID2019-106188GB-I00 and PID2022-137283NB-C21 of MCIN/AEI/
10.13039/501100011033 and project CLaPPo (21.SI03.64658) of Universidad de Cantabria and Banco Santander. | es_ES |
dc.format.extent | 15 p. | es_ES |
dc.language.iso | eng | es_ES |
dc.publisher | University of California. eScholarship | es_ES |
dc.rights | ©The authors. Released under the CC BY license (International 4.0). | es_ES |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | * |
dc.source | Combinatorial Theory, 2023, 3(3), 2 | es_ES |
dc.subject.other | Lattice polytopes | es_ES |
dc.subject.other | Unimodular covers | es_ES |
dc.subject.other | Integer decomposition property | es_ES |
dc.title | Unimodular covers of 3-dimensional parallelepipeds and Cayley sums | es_ES |
dc.type | info:eu-repo/semantics/article | es_ES |
dc.relation.publisherVersion | https://doi.org/10.5070/C63362785 | es_ES |
dc.rights.accessRights | openAccess | es_ES |
dc.identifier.DOI | 10.5070/C63362785 | |
dc.type.version | publishedVersion | es_ES |