Mostrar el registro sencillo

dc.contributor.authorMieites Alonso, Verónica
dc.contributor.authorGutiérrez Gutiérrez, José Alberto 
dc.contributor.authorLópez Higuera, José Miguel 
dc.contributor.authorConde Portilla, Olga María 
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2024-02-15T18:53:10Z
dc.date.available2024-02-15T18:53:10Z
dc.date.issued2024
dc.identifier.issn2076-3417
dc.identifier.otherPID2019-107270RB-C21es_ES
dc.identifier.urihttps://hdl.handle.net/10902/31775
dc.description.abstractThe visualization of 2D clinical data often relies on color-coded images, but different colormaps can introduce cognitive biases, impacting result interpretation. Moreover, when using color for diagnosis with multiple biomarkers, the application of distinct colormaps for each parameter can hinder comparisons. Our aim was to introduce a visualization technique that utilizes the hue (H), saturation (S), and value (V) in a single image to convey multi-parametric data on various optical properties in an effective manner. To achieve this, we conducted a study involving two datasets, one comprising multi-modality measurements of the human aorta and the other featuring multiple parameters of dystrophic mice muscles. Through this analysis, we determined that H is best suited to emphasize differences related to pathology, while V highlights high-spatial-resolution data disparities, and color alterations effectively indicate changes in chemical component concentrations. Furthermore, encoding structural information as S and V within the same image assists in pinpointing the specific locations of these variations. In cases where all data are of a high resolution, H remains the optimal indicator of pathology, ensuring results' interpretability. This approach simplifies the selection of an appropriate colormap and enhances the ability to grasp a sample's characteristics at a single glance.es_ES
dc.description.sponsorshipSupport for this work was provided by the projects PREVAL 21/07 (FUSIOMUSCLE) from IDIVAL; DTS22-00127 (hyPERfusioCAM) and DTS17-00055 (INTRACARDIO) funded by Instituto de Salud Carlos III (ISCIII) and co-funded by the European Union; and EQC 2019-006589-P and PID2019-107270RB-C21/AEI/10.13039/501100011033 from Ministerio de Ciencia e Innovacion and FEDER, “A way to make Europe”.es_ES
dc.format.extent12 p.es_ES
dc.language.isoenges_ES
dc.publisherMDPIes_ES
dc.rights© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.es_ES
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.sourceApplied Sciences, 2024, 14(1), 155es_ES
dc.subject.otherHSV color spacees_ES
dc.subject.otherOptical propertieses_ES
dc.subject.otherStructurees_ES
dc.subject.otherChemical compositiones_ES
dc.subject.otherOptical coherence tomographyes_ES
dc.subject.otherHyperspectral imaginges_ES
dc.subject.otherDiagnostic mapses_ES
dc.subject.otherAttenuation coefficientes_ES
dc.subject.otherBirefringencees_ES
dc.titleSingle-image multi-parametric representation of optical properties through encodings to the HSV color spacees_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.rights.accessRightsopenAccesses_ES
dc.identifier.DOI10.3390/app14010155
dc.type.versionpublishedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.Excepto si se señala otra cosa, la licencia del ítem se describe como © 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.