Mostrar el registro sencillo

dc.contributor.authorRodríguez Cobo, Luis 
dc.contributor.authorReyes González, Luis Rafael 
dc.contributor.authorAlgorri Genaro, José Francisco 
dc.contributor.authorDíez del Valle Garzón, Sara
dc.contributor.authorGarcía García, Roberto
dc.contributor.authorLópez Higuera, José Miguel 
dc.contributor.authorCobo García, Adolfo 
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2024-02-15T18:52:30Z
dc.date.available2024-02-15T18:52:30Z
dc.date.issued2024
dc.identifier.issn1424-8220
dc.identifier.otherPID2019-107270RB-C21es_ES
dc.identifier.otherPDC2021-121172-C21es_ES
dc.identifier.otherTED2021-130378B-C21es_ES
dc.identifier.urihttps://hdl.handle.net/10902/31774
dc.description.abstractThis work involves exploring non-invasive sensor technologies for data collection and preprocessing, specifically focusing on novel thermal calibration methods and assessing low-cost infrared radiation sensors for facial temperature analysis. Additionally, it investigates innovative approaches to analyzing acoustic signals for quantifying coughing episodes. The research integrates diverse data capture technologies to analyze them collectively, considering their temporal evolution and physical attributes, aiming to extract statistically significant relationships among various variables for valuable insights. The study delineates two distinct aspects: cough detection employing a microphone and a neural network, and thermal sensors employing a calibration curve to refine their output values, reducing errors within a specified temperature range. Regarding control units, the initial implementation with an ESP32 transitioned to a Raspberry Pi model 3B+ due to neural network integration issues. A comprehensive testing is conducted for both fever and cough detection, ensuring robustness and accuracy in each scenario. The subsequent work involves practical experimentation and interoperability tests, validating the proof of concept for each system component. Furthermore, this work assesses the technical specifications of the prototype developed in the preceding tasks. Real-time testing is performed for each symptom to evaluate the system?s effectiveness. This research contributes to the advancement of non-invasive sensor technologies, with implications for healthcare applications such as remote health monitoring and early disease detection.es_ES
dc.description.sponsorshipThis work is part of the projects 2020/INN/21 funded by Gobierno de Cantabria; PID2019-107270RB-C21, PDC2021-121172-C21 and TED2021-130378B-C21 project funded by MCIN/AEI/ 10.13039/501100011033, FEDER, and EU NextGenerationEU/PRT. J.F.A. received funding from Ministerio de Ciencia, Innovación y Universidades of Spain under Juan de la Cierva-Incorporación grant.es_ES
dc.format.extent19 p.es_ES
dc.language.isoenges_ES
dc.publisherMDPIes_ES
dc.rights© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.es_ES
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.sourceSensors, 2024, 24(1), 129es_ES
dc.subject.otherThermales_ES
dc.subject.otherAcoustices_ES
dc.subject.otherSensorses_ES
dc.subject.otherRemotees_ES
dc.subject.otherLow-cost hardwarees_ES
dc.subject.otherNeural networkses_ES
dc.titleNon-contact thermal and acoustic sensors with embedded artificial intelligence for point-of-care diagnosticses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.rights.accessRightsopenAccesses_ES
dc.identifier.DOI10.3390/s24010129
dc.type.versionpublishedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.Excepto si se señala otra cosa, la licencia del ítem se describe como © 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.