Mostrar el registro sencillo

dc.contributor.authorSierra Menéndez, Sergio 
dc.contributor.authorPrado Ortega, Elena
dc.contributor.authorRodríguez Cobo, Luis 
dc.contributor.authorQuiles Pons, Carla
dc.contributor.authorRoldán Varona, Pablo
dc.contributor.authorDíaz Viñolas, David
dc.contributor.authorAnuarbe Cortés, Pedro 
dc.contributor.authorCobo García, Adolfo 
dc.contributor.authorSánchez Delgado, Francisco
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2024-02-15T18:22:00Z
dc.date.available2024-02-15T18:22:00Z
dc.date.issued2023
dc.identifier.issn2578-1979
dc.identifier.otherPID2019-107270RB-C21es_ES
dc.identifier.urihttps://hdl.handle.net/10902/31767
dc.description.abstractMonitoring marine biodiversity is a challenge in some vulnerable and difficult-to-access habitats, such as underwater caves. Underwater caves are a great focus of biodiversity, concentrating a large number of species in their environment. However, most of the sessile species that live on the rocky walls are very vulnerable, and they are often threatened by different pressures. The use of these spaces as a destination for recreational divers can cause different impacts on the benthic habitat. In this work, we propose a methodology based on video recordings of cave walls and image analysis with deep learning algorithms to estimate the spatial density of structuring species in a study area. We propose a combination of automatic frame overlap detection, estimation of the actual extent of surface cover, and semantic segmentation of the main 10 species of corals and sponges to obtain species density maps. These maps can be the data source for monitoring biodiversity over time. In this paper, we analyzed the performance of three different semantic segmentation algorithms and backbones for this task and found that the Mask R-CNN model with the Xception101 backbone achieves the best accuracy, with an average segmentation accuracy of 82%.es_ES
dc.description.sponsorshipThis work was supported by the Organismo Autónomo de Parques Nacionales, Ministerio para Figure 7. Relative abundance of species. 10 la Transición Ecológica y el Reto Demográfico, Gobierno de España, Project VirtualMAR (codes 2470-S/2017 and 2493-S/2017); by IP INTEMARES project (LIFE15 IPE/ES/000012); by the R+D project PID2019-107270RB-C21 (funded by MCIN/AEI/10.13039/501100011033); by Plan Nacional de I+D+I; and by Instituto de Salud Carlos III (ISCIII), Subdirección General de Redes y Centros de Investigación Cooperativa, Ministerio de Ciencia, Innovación y Universidades.es_ES
dc.format.extent11 p.es_ES
dc.language.isoenges_ES
dc.publisherEnPresses_ES
dc.rights© 2023 by author(s). Journal of Geography and Cartography is published by EnPress Publisher LLes_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/*
dc.sourceJournal of Geography and Cartography, 2023, 6(1), 1980es_ES
dc.subject.otherMarine Biodiversityes_ES
dc.subject.otherUnderwater Caveses_ES
dc.subject.otherUnderwater Imageses_ES
dc.subject.otherDeep Learninges_ES
dc.subject.otherSemantic Segmentationes_ES
dc.titleDensity estimation of the main structuring sessile species in underwater marine caves with a deep learning approaches_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttps://doi.org/10.24294/jgc.v6i1.1980es_ES
dc.rights.accessRightsopenAccesses_ES
dc.identifier.DOI10.24294/jgc.v6i1.1980
dc.type.versionpublishedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo

© 2023 by author(s). Journal of Geography and Cartography is published by EnPress Publisher LLExcepto si se señala otra cosa, la licencia del ítem se describe como © 2023 by author(s). Journal of Geography and Cartography is published by EnPress Publisher LL