• Mi UCrea
    Ver ítem 
    •   UCrea
    • UCrea Investigación
    • Departamento de Ingeniería de Comunicaciones (DICOM)
    • D12 Proyectos de Investigación
    • Ver ítem
    •   UCrea
    • UCrea Investigación
    • Departamento de Ingeniería de Comunicaciones (DICOM)
    • D12 Proyectos de Investigación
    • Ver ítem
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Passive detection of rank-one Gaussian signals for known channel subspaces and arbitrary noise

    Ver/Abrir
    PassiveDetectionRank.pdf (236.7Kb)
    Identificadores
    URI: https://hdl.handle.net/10902/31753
    DOI: 10.1109/ICASSP49357.2023.10094671
    ISBN: 978-1-7281-6327-7
    ISBN: 978-1-7281-6327-7
    Compartir
    RefworksMendeleyBibtexBase
    Estadísticas
    Ver Estadísticas
    Google Scholar
    Registro completo
    Mostrar el registro completo DC
    Autoría
    Ramírez García, David; Santamaría Caballero, Luis IgnacioAutoridad Unican; Scharf, Louis L.Autoridad Unican
    Fecha
    2023
    Derechos
    © 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
    Publicado en
    IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Rhodes Island, Greece, 2023, 12486-12490
    Editorial
    Institute of Electrical and Electronics Engineers, Inc.
    Enlace a la publicación
    https://doi.org/10.1109/ICASSP49357.2023.10094671
    Palabras clave
    Generalized likelihood ratio (GLR)
    Hypothesis test
    Multi-sensor array
    Passive radar
    Resumen/Abstract
    This paper addresses the passive detection of a common signal in two multi-sensor arrays. For this problem, we derive a detector based on likelihood theory for the case of one-antenna transmitters, independent Gaussian noises with arbitrary spatial structure, Gaussian signals, and known channel subspaces. The detector uses a likelihood ratio where all but one of the unknown parameters are replaced by their maximum likelihood (ML) estimates. The ML estimation of the remaining parameter requires a numerical search, and it is therefore estimated using a sample-based estimator. The performance of the proposed detector is illustrated by means of Monte Carlo simulations and compared with that of the detector for unknown channels, showing the advantage of this knowledge.
    Colecciones a las que pertenece
    • D12 Congresos [593]
    • D12 Proyectos de Investigación [517]

    UNIVERSIDAD DE CANTABRIA

    Repositorio realizado por la Biblioteca Universitaria utilizando DSpace software
    Contacto | Sugerencias
    Metadatos sujetos a:licencia de Creative Commons Reconocimiento 4.0 España
     

     

    Listar

    Todo UCreaComunidades y coleccionesFecha de publicaciónAutoresTítulosTemasEsta colecciónFecha de publicaciónAutoresTítulosTemas

    Mi cuenta

    AccederRegistrar

    Estadísticas

    Ver Estadísticas
    Sobre UCrea
    Qué es UcreaGuía de autoarchivoArchivar tesisAcceso abiertoGuía de derechos de autorPolítica institucional
    Piensa en abierto
    Piensa en abierto
    Compartir

    UNIVERSIDAD DE CANTABRIA

    Repositorio realizado por la Biblioteca Universitaria utilizando DSpace software
    Contacto | Sugerencias
    Metadatos sujetos a:licencia de Creative Commons Reconocimiento 4.0 España