Mostrar el registro sencillo

dc.contributor.authorGómez Gandarillas, Delfina 
dc.contributor.authorNazarov, Sergei A.
dc.contributor.authorOrive Illera, Rafael
dc.contributor.authorPérez Martínez, María Eugenia 
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2024-02-07T18:04:17Z
dc.date.available2024-02-07T18:04:17Z
dc.date.issued2023-10
dc.identifier.issn0025-584X
dc.identifier.issn1522-2616
dc.identifier.issn0323-5572
dc.identifier.otherPGC2018-098178-B-I00es_ES
dc.identifier.otherPID2020-114703GB-I00es_ES
dc.identifier.urihttps://hdl.handle.net/10902/31520
dc.description.abstractIn this paper, we provide uniform bounds for convergence rates of the low frequencies of a parametric family of problems for the Laplace operator posed on a rectangular perforated domain of the plane of height H. The perforations are periodically placed along the ordinate axis at a distance between them, where ε is a parameter that converges toward zero. Another parameter η, the Floquet-parameter, ranges in the interval. The boundary conditions are quasi-periodicity conditions on the lateral sides of the rectangle and Neumann over the rest. We obtain precise bounds for convergence rates which are uniform on both parameters ε and η and strongly depend on H. As a model problem associated with a waveguide, one of the main difficulties in our analysis comes near the nodes of the limit dispersion curves.es_ES
dc.description.sponsorshipThe work has been partially supported by MICINN through PGC2018-098178-B-I00, PID2020-114703GB-I00 and Severo Ochoa Programme for Centres of Excellence in R&D (CEX2019-000904-S).es_ES
dc.format.extent23 p.es_ES
dc.language.isoenges_ES
dc.publisherWiley-VCH-Verl.es_ES
dc.rightsThis is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. © 2023 The Authors. Mathematische Nachrichten published byWiley-VCH GmbH.es_ES
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.sourceMathematische Nachrichten, 2023, 296(10), 4888-4910es_ES
dc.subject.otherBand-gap structurees_ES
dc.subject.otherDouble periodicityes_ES
dc.subject.otherHomogenizationes_ES
dc.subject.otherNeumann–Laplace operatores_ES
dc.subject.otherPerforated mediaes_ES
dc.subject.otherSpectral gapses_ES
dc.subject.otherSpectral perturbationses_ES
dc.subject.otherWaveguidees_ES
dc.titleAsymptotic stability of the spectrum of a parametric family of homogenization problems associated with a perforated waveguidees_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttps://doi.org/10.1002/mana.202100589es_ES
dc.rights.accessRightsopenAccesses_ES
dc.identifier.DOI10.1002/mana.202100589
dc.type.versionpublishedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. © 2023 The Authors. Mathematische Nachrichten published byWiley-VCH GmbH.Excepto si se señala otra cosa, la licencia del ítem se describe como This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. © 2023 The Authors. Mathematische Nachrichten published byWiley-VCH GmbH.