Mostrar el registro sencillo

dc.contributor.authorCole, Philippa S.
dc.contributor.authorCoogan, Adam
dc.contributor.authorKavanagh, Bradley James
dc.contributor.authorBertone, Gianfranco
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2024-02-07T13:32:04Z
dc.date.available2024-02-07T13:32:04Z
dc.date.issued2023
dc.identifier.issn1550-7998
dc.identifier.issn1550-2368
dc.identifier.issn2470-0010
dc.identifier.issn2470-0029
dc.identifier.urihttps://hdl.handle.net/10902/31511
dc.description.abstractFuture ground-based gravitational wave observatories will be ideal probes of the environments surrounding black holes with masses 1?10M?. Binary black hole mergers with mass ratios of order q=m2/m1?10?3 can remain in the frequency band of such detectors for months or years, enabling precision searches for modifications of their gravitational waveforms with respect to vacuum inspirals. As a concrete example of an environmental effect, we consider here a population of binary primordial black holes which are expected to be embedded in dense cold dark matter spikes. We provide a viable formation scenario for these systems compatible with all observational constraints and predict upper and lower limits on the merger rates of small-mass-ratio pairs. Given a detected signal of one such system by either Einstein Telescope or Cosmic Explorer, we show that the properties of the binary and of the dark matter spike can be measured to excellent precision with one week?s worth of data, if the effect of the dark matter spike on the waveform is taken into account. However, we show that there is a risk of biased parameter inference or missing the events entirely if the effect of the predicted dark matter overdensity around these objects is not properly accounted for.es_ES
dc.description.sponsorshipWe thank Thomas Edwards, Andrew Gow, Samaya Nissanke and Ville Vaskonen for useful conversations. P. S. C. acknowledges funding from the Institute of Physics, University of Amsterdam. A. C. received funding from the Netherlands eScience Center (Grant No. ETEC.2019.018) and the Schmidt Futures Foundation. B. J. K. thanks the Spanish Agencia Estatal de Investigación (AEI, Ministerio de Ciencia, Innovación y Universidades) for the support to the Unidad de Excelencia María de Maeztu Instituto de Física de Cantabria, Ref. No. MDM-2017-0765. We acknowledge Santander Supercomputing support group at the University of Cantabria who provided access to the supercomputer Altamira at the Institute of Physics of Cantabria (IFCA-CSIC), member of the Spanish Supercomputing Network, for performing simulations and analyses.es_ES
dc.format.extent20 p.es_ES
dc.language.isoenges_ES
dc.publisherAmerican Physical Societyes_ES
dc.rights© American Physical Societyes_ES
dc.sourcePhysical Review D, 2023, 107(8), 083006es_ES
dc.titleMeasuring dark matter spikes around primordial black holes with Einstein Telescope and Cosmic Exploreres_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttps://doi.org/10.1103/PhysRevD.107.083006es_ES
dc.rights.accessRightsopenAccesses_ES
dc.identifier.DOI10.1103/PhysRevD.107.083006
dc.type.versionpublishedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo