• Mi UCrea
    Ver ítem 
    •   UCrea
    • UCrea Investigación
    • Instituto de Hidráulica Ambiental de Cantabria 'IH Cantabria'
    • D56 Artículos
    • Ver ítem
    •   UCrea
    • UCrea Investigación
    • Instituto de Hidráulica Ambiental de Cantabria 'IH Cantabria'
    • D56 Artículos
    • Ver ítem
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A ranking of hydrological signatures based on their predictability in space

    Ver/Abrir
    RankingHydrologicalS ... (8.321Mb)
    Identificadores
    URI: https://hdl.handle.net/10902/31484
    DOI: 10.1029/2018WR022606
    ISSN: 0043-1397
    ISSN: 1944-7973
    Compartir
    RefworksMendeleyBibtexBase
    Estadísticas
    Ver Estadísticas
    Google Scholar
    Registro completo
    Mostrar el registro completo DC
    Autoría
    Addor, N; Nearing, G.; Prieto Sierra, Cristina; Newman, A.J.; Le Vine, N.; Clark, M.P.
    Fecha
    2018-11
    Derechos
    © American Geophysical Union
    Publicado en
    Water Resources Research, 2018, 54(11), 8792-8812
    Editorial
    American Geophysical Union
    Resumen/Abstract
    Hydrological signatures are now used for a wide range of purposes, including catchment classification, process exploration, and hydrological model calibration. The recent boost in the popularity and number of signatures has however not been accompanied by the development of clear guidance on signature selection. Here we propose that exploring the predictability of signatures in space provides important insights into their drivers and their sensitivity to data uncertainties and is hence useful for signature selection. We use three complementary approaches to compare and rank 15 commonly used signatures, which we evaluate in 600+ U.S. catchments from the Catchment Attributes and MEteorology for Large-sample Studies (CAMELS) data set. First, we employ machine learning (random forests) to explore how attributes characterizing the climatic conditions, topography, land cover, soil, and geology influence (or not) the signatures. Second, we use simulations of the Sacramento Soil Moisture Accounting model to benchmark the random forest predictions. Third, we take advantage of the large sample of CAMELS catchments to characterize the spatial autocorrelation (using Moran?s I) of the signature field. These three approaches lead to remarkably similar rankings of the signatures. We show (i) that signatures with the noisiest spatial pattern tend to be poorly captured by hydrological simulations, (ii) that their relationship to catchments attributes are elusive (in particular they are not well explained by climatic indices), and (iii) that they are particularly sensitive to discharge uncertainties. We suggest that a better understanding of the drivers of hydrological signatures and a better characterization of their uncertainties would increase their value in hydrological studies.
    Colecciones a las que pertenece
    • D56 Artículos [333]

    UNIVERSIDAD DE CANTABRIA

    Repositorio realizado por la Biblioteca Universitaria utilizando DSpace software
    Contacto | Sugerencias
    Metadatos sujetos a:licencia de Creative Commons Reconocimiento 4.0 España
     

     

    Listar

    Todo UCreaComunidades y coleccionesFecha de publicaciónAutoresTítulosTemasEsta colecciónFecha de publicaciónAutoresTítulosTemas

    Mi cuenta

    AccederRegistrar

    Estadísticas

    Ver Estadísticas
    Sobre UCrea
    Qué es UcreaGuía de autoarchivoArchivar tesisAcceso abiertoGuía de derechos de autorPolítica institucional
    Piensa en abierto
    Piensa en abierto
    Compartir

    UNIVERSIDAD DE CANTABRIA

    Repositorio realizado por la Biblioteca Universitaria utilizando DSpace software
    Contacto | Sugerencias
    Metadatos sujetos a:licencia de Creative Commons Reconocimiento 4.0 España