Mostrar el registro sencillo

dc.contributor.authorNearing, Grey S.
dc.contributor.authorRuddell, Benjamin L.
dc.contributor.authorBennett, Andrew R.
dc.contributor.authorPrieto Sierra, Cristina
dc.contributor.authorGupta, Hoshin V.
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2024-02-06T15:30:47Z
dc.date.available2024-02-06T15:30:47Z
dc.date.issued2020-02
dc.identifier.issn0043-1397
dc.identifier.issn1944-7973
dc.identifier.urihttps://hdl.handle.net/10902/31482
dc.description.abstractModel evaluation and hypothesis testing are fundamental to any field of science. We propose here that by changing slightly the way we think and communicate about inference—from being fundamentally a problem of uncertainty quantification to being a problem of information quantification—allows us to avoid certain problems related to testing models as hypotheses. We propose that scientists are typically interested in assessing the information provided by models, not the truth value or likelihood of a model. Information theory allows us to formalize this perspectivees_ES
dc.format.extent8 p.es_ES
dc.language.isoenges_ES
dc.publisherAmerican Geophysical Uniones_ES
dc.rights© American Geophysical Uniones_ES
dc.sourceWater Resources Research, 2020, 56(2), e2019WR024918es_ES
dc.titleDoes Information Theory Provide a New Paradigm for Earth Science? Hypothesis Testinges_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.rights.accessRightsopenAccesses_ES
dc.identifier.DOI10.1029/2019WR024918
dc.type.versionpublishedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo