dc.contributor.author | Olarte Plata, Juan D. | |
dc.contributor.author | Gabriel, Jordan | |
dc.contributor.author | Albella Echave, Pablo | |
dc.contributor.author | Bresme, Fernando | |
dc.contributor.other | Universidad de Cantabria | es_ES |
dc.date.accessioned | 2024-02-05T17:40:42Z | |
dc.date.available | 2024-02-05T17:40:42Z | |
dc.date.issued | 2022-01 | |
dc.identifier.issn | 1936-0851 | |
dc.identifier.issn | 1936-086X | |
dc.identifier.other | PGC2018-096649-B-I00 | es_ES |
dc.identifier.uri | https://hdl.handle.net/10902/31446 | |
dc.description.abstract | Janus nanoparticles (JNPs) feature heterogeneous compositions, bringing opportunities in technological and medical applications. We introduce a theoretical approach based on nonequilibrium molecular dynamics simulations and heat transfer continuum theory to investigate the temperature fields generated around heated spherical JNPs covering a wide range of particle sizes, from a few nm to 100 nm. We assess the performance of these nanoparticles to generate anisotropic heating at the nanoscale. We demonstrate that the contrasting interfacial thermal conductances of the fluid-material interfaces arising from the heterogeneous composition of the JNPs can be exploited to control the thermal fields around the nanoparticle, leading to a temperature difference between both sides of the nanoparticle (temperature contrast) that is significant for particles comprising regions with disparate hydrophilicity. We illustrate this idea using coarse-grained and atomistic models of gold nanoparticles with hydrophobic and hydrophilic coatings, in water. Furthermore, we introduce a continuum model to predict the temperature contrast as a function of the interfacial thermal conductance and nanoparticle size. We further show that, unlike homogeneous nanoparticles, the interfacial fluid temperature depends on the interfacial thermal conductance of Janus nanoparticles. | es_ES |
dc.description.sponsorship | We thank the Leverhulme Trust (UK grant RPG-2018-384) and the Spanish national project (Grant No. PGC2018-096649-B-I) for financial support, the UK Materials and Molecular Modelling Hub for computational resources partially funded by the EPSRC UK (EP/P020194/1 and EP/T022213/1), and the Imperial College RCS High-Performance Computing facility. In addition, F.B. acknowledges financial support from EPSRC UK (EP/J003859/1), and P.A. acknowledges funding from a Ramon y Cajal Fellowship (Grant No. RYC-2016-20831). | es_ES |
dc.format.extent | 16 p. | es_ES |
dc.language.iso | eng | es_ES |
dc.publisher | American Chemical Society | es_ES |
dc.rights | Alojado según Resolución CNEAI 5/12/23 (ANECA) © 2021 American Chemical Society | es_ES |
dc.source | ACS Nano, 2022, 16 (1), 694-709 | es_ES |
dc.subject.other | Nanoparticles | es_ES |
dc.subject.other | Nanoscale heat transport | es_ES |
dc.subject.other | Plasmonic heating | es_ES |
dc.subject.other | Interfacial thermal conductance | es_ES |
dc.subject.other | Janus nanoparticles | es_ES |
dc.title | Spatial control of heat flow at the nanoscale using Janus particles | es_ES |
dc.type | info:eu-repo/semantics/article | es_ES |
dc.relation.publisherVersion | https://doi.org/10.1021/acsnano.1c08220 | es_ES |
dc.rights.accessRights | closedAccess | es_ES |
dc.identifier.DOI | 10.1021/acsnano.1c08220 | |
dc.type.version | publishedVersion | es_ES |