Mostrar el registro sencillo

dc.contributor.authorOlarte Plata, Juan D.
dc.contributor.authorGabriel, Jordan
dc.contributor.authorAlbella Echave, Pablo 
dc.contributor.authorBresme, Fernando
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2024-02-05T17:40:42Z
dc.date.available2024-02-05T17:40:42Z
dc.date.issued2022-01
dc.identifier.issn1936-0851
dc.identifier.issn1936-086X
dc.identifier.otherPGC2018-096649-B-I00es_ES
dc.identifier.urihttps://hdl.handle.net/10902/31446
dc.description.abstractJanus nanoparticles (JNPs) feature heterogeneous compositions, bringing opportunities in technological and medical applications. We introduce a theoretical approach based on nonequilibrium molecular dynamics simulations and heat transfer continuum theory to investigate the temperature fields generated around heated spherical JNPs covering a wide range of particle sizes, from a few nm to 100 nm. We assess the performance of these nanoparticles to generate anisotropic heating at the nanoscale. We demonstrate that the contrasting interfacial thermal conductances of the fluid-material interfaces arising from the heterogeneous composition of the JNPs can be exploited to control the thermal fields around the nanoparticle, leading to a temperature difference between both sides of the nanoparticle (temperature contrast) that is significant for particles comprising regions with disparate hydrophilicity. We illustrate this idea using coarse-grained and atomistic models of gold nanoparticles with hydrophobic and hydrophilic coatings, in water. Furthermore, we introduce a continuum model to predict the temperature contrast as a function of the interfacial thermal conductance and nanoparticle size. We further show that, unlike homogeneous nanoparticles, the interfacial fluid temperature depends on the interfacial thermal conductance of Janus nanoparticles.es_ES
dc.description.sponsorshipWe thank the Leverhulme Trust (UK grant RPG-2018-384) and the Spanish national project (Grant No. PGC2018-096649-B-I) for financial support, the UK Materials and Molecular Modelling Hub for computational resources partially funded by the EPSRC UK (EP/P020194/1 and EP/T022213/1), and the Imperial College RCS High-Performance Computing facility. In addition, F.B. acknowledges financial support from EPSRC UK (EP/J003859/1), and P.A. acknowledges funding from a Ramon y Cajal Fellowship (Grant No. RYC-2016-20831).es_ES
dc.format.extent16 p.es_ES
dc.language.isoenges_ES
dc.publisherAmerican Chemical Societyes_ES
dc.rightsAlojado según Resolución CNEAI 5/12/23 (ANECA) © 2021 American Chemical Societyes_ES
dc.sourceACS Nano, 2022, 16 (1), 694-709es_ES
dc.subject.otherNanoparticleses_ES
dc.subject.otherNanoscale heat transportes_ES
dc.subject.otherPlasmonic heatinges_ES
dc.subject.otherInterfacial thermal conductancees_ES
dc.subject.otherJanus nanoparticleses_ES
dc.titleSpatial control of heat flow at the nanoscale using Janus particleses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttps://doi.org/10.1021/acsnano.1c08220es_ES
dc.rights.accessRightsclosedAccesses_ES
dc.identifier.DOI10.1021/acsnano.1c08220
dc.type.versionpublishedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo