Mostrar el registro sencillo

dc.contributor.authorCosta, Wagner L.L.
dc.contributor.authorIdier, Déborah
dc.contributor.authorRohmer, Jérémy
dc.contributor.authorMenéndez García, Melisa 
dc.contributor.authorCamus Braña, Paula
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2024-02-05T16:35:19Z
dc.date.available2024-02-05T16:35:19Z
dc.date.issued2020
dc.identifier.issn2077-1312
dc.identifier.otherRTI2018-096449-B-I00es_ES
dc.identifier.urihttps://hdl.handle.net/10902/31441
dc.description.abstractIncreasing our capacity to predict extreme storm surges is one of the key issues in terms of coastal flood risk prevention and adaptation. Dynamically forecasting storm surges is computationally expensive. Here, we focus on an alternative data-driven approach and set up a weather-type statistical downscaling for daily maximum storm surge (SS) prediction, using atmospheric hindcasts (CFSR and CFSv2) and 15 years of tidal gauge station measurements. We focus on predicting the storm surge at La Rochelle?La Pallice tidal gauge station. First, based on a sensitivity analysis to the various parameters of the weather-type approach, we find that the model configuration providing the best performance in SS prediction relies on a fully supervised classification using minimum daily sea level pressure (SLP) and maximum SLP gradient, with 1 resolution in the northeast Atlantic domain as the predictor. Second, we compare the resulting optimal model with the inverse barometer approach and other statistical models (multi-linear regression; semi-supervised and unsupervised weather-types based approaches). The optimal configuration provides more accurate predictions for extreme storm surges, but also the capacity to identify unusual atmospheric storm patterns that can lead to extreme storm surges, as the Xynthia storm for instance (a decrease in the maximum absolute error of 50%).es_ES
dc.description.sponsorshipThis research was funded by the ERA4CS (grant number: 690462). M.Menendez and P. Camus acknowledge the support of the Spanish State Research Agency under the EXCEED project (Grant RTI2018-096449-B-I00es_ES
dc.format.extent20 p.es_ES
dc.language.isoenges_ES
dc.publisherMDPIes_ES
dc.rights© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution( CC BY) license.es_ES
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.sourceJournal of Marine Science and Engineering, 2020, 8(12), 1028es_ES
dc.subject.otherStatistical downscalinges_ES
dc.subject.otherWeather typeses_ES
dc.subject.otherStorm surgees_ES
dc.subject.otherFully supervised classificationes_ES
dc.subject.otherXynthia stormes_ES
dc.subject.otherJoachim stormes_ES
dc.subject.otherTide gaugees_ES
dc.subject.otherLa Rochellees_ES
dc.titleStatistical prediction of extreme storm surges based on a fully supervised weather-type downscaling modeles_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttps://doi.org/10.3390/jmse8121028es_ES
dc.rights.accessRightsopenAccesses_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/690462/EU/European Research Area for Climate Services/ERA4CS/es_ES
dc.identifier.DOI10.3390/jmse8121028
dc.type.versionpublishedVersiones_ES


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution( CC BY) license.Excepto si se señala otra cosa, la licencia del ítem se describe como © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution( CC BY) license.