FlexVC: Flexible Virtual Channel management in low-diameter networks
Ver/ Abrir
Registro completo
Mostrar el registro completo DCAutoría
Fuentes Saez, Pablo


Fecha
2017Derechos
© 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
Publicado en
2017 IEEE International Parallel and Distributed Processing Symposium (IPDPS), New York, IEEE, 2017
Palabras clave
Buffer management
Deadlock avoidance
Resumen/Abstract
Deadlock avoidance mechanisms for lossless lowdistance networks typically increase the order of virtual channel (VC) index with each hop. This restricts the number of buffer resources depending on the routing mechanism and limits performance due to an inefficient use. Dynamic buffer organizations increase implementation complexity and only provide small gains in this context because a significant amount of buffering needs to be allocated statically to avoid congestion. We introduce FlexVC, a simple buffer management mechanism which permits a more flexible use of VCs. It combines statically partitioned buffers, opportunistic routing and a relaxed distancebased deadlock avoidance policy. FlexVC mitigates Head-of-Line blocking and reduces up to 50% the memory requirements. Simulation results in a Dragonfly network show congestion reduction and up to 37.8% throughput improvement, outperforming more complex dynamic approaches. FlexVC merges different flows of traffic in the same buffers, which in some cases makes more difficult to identify the traffic pattern in order to support nonminimal adaptive routing. An alternative denoted FlexVCminCred improves congestion sensing for adaptive routing by tracking separately packets routed minimally and nonminimally, rising throughput up to 20.4% with 25% savings in buffer area.
Colecciones a las que pertenece
- D30 Congresos [57]
- D30 Proyectos de Investigación [116]