Mostrar el registro sencillo

dc.contributor.authorSalomón, Sergio
dc.contributor.authorTirnauca, Cristina 
dc.contributor.authorDuque Medina, Rafael 
dc.contributor.authorMontaña Arnaiz, José Luis 
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2024-02-01T16:57:46Z
dc.date.available2024-02-01T16:57:46Z
dc.date.issued2018
dc.identifier.issn1868-5145
dc.identifier.issn1868-5137
dc.identifier.otherMTM2014-55262-Pes_ES
dc.identifier.urihttps://hdl.handle.net/10902/31393
dc.description.abstractGeolocation is a powerful source of information through which user patterns can be extracted. User regions-of-interest, along with these patterns, can be used to recognize and imitate user behavior. In this work we develop a methodology for preprocessing location data in order to discover the most relevant places the user visits, and we propose a Probabilistic Finite Automaton structure as mobility model. We analyse both location prediction and user identification tasks. Our model is assessed with two evaluation metrics regarding its predictive accuracy and user identification accuracy, and compared against other models.es_ES
dc.description.sponsorshipThe authors gratefully acknowledge the financial support from FEDER (Fondo Europeo de Desarrollo Regional) and SODERCAN (Sociedad para el Desarrollo Regional de Cantabria) for the project TI16-IN-007 within the program "I+C=+C 2016—PROYECTOS DE I+D EN EL ÁMBITO DE LAS TIC, LÍNEA SMART", and from Ministerio de Ciencia e Innovación (MICINN), Spain for the project PAC::LFO (MTM2014-55262-P).es_ES
dc.format.extent10 p.es_ES
dc.language.isoenges_ES
dc.publisherSpringeres_ES
dc.rights© Springer-Verlag GmbH Germany, part of Springer Nature 2018. This version of the article has been accepted for publication, after peer review (when applicable) and is subject to Springer Nature's AM terms of use, but is not the Version of Record and does not reflect post-acceptance improvements, or any corrections. The Version of Record is available online at: http://dx.doi.org/s12652-018-1117-4es_ES
dc.sourceJournal of Ambient Intelligence and Humanized Computing, 2023, 14, 31-40es_ES
dc.subject.otherGeolocationes_ES
dc.subject.otherUser identifcationes_ES
dc.subject.otherLocation Predictiones_ES
dc.subject.otherProbabilistic fnite automatones_ES
dc.subject.otherLearning from observationes_ES
dc.titleUser identification from mobility traceses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttps://doi.org/10.1007/s12652-018-1117-4es_ES
dc.rights.accessRightsopenAccesses_ES
dc.identifier.DOIhttps://doi.org/10.1007/s12652-018-1117-4
dc.type.versionacceptedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo